
Data-Limited Methods Toolkit (DLMtool 5.4.2)
User Guide

Tom Carruthers & Adrian Hordyk

2020-02-24

2

Contents

Introduction 9

1 Introduction 9
1.1 Data-Limited Methods Toolkit 9
1.2 Management Strategy Evaluation 10
1.3 How does Management Strategy Evaluation Differ from Stock

Assessment? . 11
1.4 Assumed Knowledge . 12
1.5 The User Manual . 13
1.6 DLMtool Bug Reports . 13
1.7 Version Notes . 13

Getting Started with DLMtool 17

2 Getting Started 17
2.1 Required Software . 17
2.2 Installing DLMtool . 18
2.3 Loading DLMtool . 19

3 A Very Quick Demo 21

4 The Operating Model 23
4.1 OM Components . 23
4.2 Plotting OM Components . 28
4.3 Building an OM from Component Objects 28
4.4 Visualizing an OM . 30

5 Management Procedures 31
5.1 What is a Management Procedure? 31
5.2 Available Management Procedures 32
5.3 Types of Management Procedure 32

6 Running the MSE 39
6.1 Specify an Operating Model . 39

3

4 CONTENTS

6.2 Choose the Management Procedures 39
6.3 Run the MSE . 40

7 Checking Convergence 41

8 Examining the MSE Results 47
8.1 Introducing Performance Metrics 47
8.2 Summary Table . 48
8.3 Plotting MSE Results . 49

9 Parallel Processing 59
9.1 Setting up Parallel Processing . 59
9.2 Running MSE with Parallel Processing 60
9.3 Determining Optimal Number of Processors 60

Creating an Operating Model 65

10 Creating a New Operating Model 65
10.1 An Example WorkFlow . 65
10.2 Create a New Project . 67
10.3 Initialize a New OM . 67
10.4 Populate and Document OM . 68
10.5 Compile the OM Report . 69
10.6 Import the OM into R . 70
10.7 Documenting an Existing OM . 70

11 Generating Correlated Life-History Parameters 73
11.1 Predicting all life-history parameters 74
11.2 Predicting some life-history parameters 75
11.3 Predicting correlated parameters 76
11.4 Introducing Custom Parameters 78

12 Modifying the OM 81
12.1 The tinyErr function . 81
12.2 The Replace function . 82

13 Operating Model Library 85

Interpreting MSE Results 89

14 Examining the MSE object 89
14.1 The First Six Slots . 90
14.2 The OM Slot . 90
14.3 The Obs Slot . 91
14.4 The B_BMSY and F_FMSY Slots . 91

CONTENTS 5

14.5 The B, FM, C and TAC Slots . 92
14.6 The SSB_hist, CB_hist, and FM_hist Slots 93
14.7 The Effort Slot . 93

15 Performance Metrics 95
15.1 The Need for Performance Metrics 95
15.2 Inevitable Trade-Offs . 96
15.3 Commonly used Performance Metrics 97
15.4 Performance Metrics Methods . 98
15.5 Summarizing Management Procedure Performance 108

16 Value of Information 121

Using Fishery Data 133

17 The Fishery Data Object 133
17.1 In the MSE . 133
17.2 Application of Management Procedures Using Real Fisheries Data 134

18 Example Data Objects 135

19 Creating Your Own Data Object 137
19.1 Creating a Data File in Excel . 137
19.2 Importing the Data object . 138
19.3 Example Fishery Data Files . 138
19.4 Populating a Data Object in R 138

20 Plotting Data Objects 141

21 Determining Feasible and Available Management Procedures 145
21.1 Feasible MPs . 145
21.2 Available MPs . 149
21.3 Unavailable MPs . 150

22 Applying Management Procedures 153

Advanced DLMtool 163

23 Averaging MPs 163

24 Evaluating OM 165

25 Customizing the Operating Model 173
25.1 Accounting for Historical Changes in Fishing 173
25.2 Size-Specific Natural Mortality 179
25.3 Selection, Retention and Discard Mortality 184

6 CONTENTS

26 Developing Custom Management Procedures 191
26.1 The Anatomy of an MP . 191
26.2 A Constant Catch MP . 194
26.3 A More Complex MP . 195
26.4 Beyond the Catch Limit . 196

27 Custom Parameters 201
27.1 Valid cpars names . 201
27.2 Correlated samples . 202
27.3 Custom internal parameters . 204

28 Subsetting the MSE Object 209
28.1 Subsetting by Performance . 209
28.2 Subsetting by Operating Model Parameters 211

29 Custom Performance Metrics 213
29.1 Necessity of Complexity . 213
29.2 PM Methods in Detail . 215
29.3 Creating Example PMs and Plot 217

A Acknowledgements 223

B References 225

C Getting Help 227
C.1 First Time Working With R? . 227
C.2 Installing the DLMtool Package 228
C.3 A Brief Note on S4 Methods . 229
C.4 Additional Help on the DLMtool 230
C.5 Questions on R-related Problems 230

D Assumptions of DLMtool 231
D.1 Biology . 231
D.2 MSE Model Assumptions . 232
D.3 Management Procedures . 234
D.4 Data and Method Application . 234
D.5 Calculating Reference Points . 234

E Changes 239
E.1 Bio-Economic Model . 240
E.2 Key Bio-Economic Parameters 240
E.3 Changes in Cost and Revenue . 242
E.4 Bio-Economic Model & MPs . 243
E.5 Some Examples . 244
E.6 Future Developments . 247
E.7 Plotting Code . 247

Introduction

7

Chapter 1

Introduction

As many as 90% of the world’s fish populations have insufficient data to conduct
a conventional stock assessment (Costello et al. 2012). Although a wide range of
data-limited management procedures (MPs; stock assessments, harvest control
rules) have been described in the primary and gray literature (Newman et
al. 2015), they have not been readily available or easily tested to determine their
efficacy for specific fisheries.

For many fishery managers and stakeholders, the path forward has been unclear
and laden with myriad questions, such as: How do these MPs perform compara-
tively? What are the performance trade-offs? What MPs are appropriate for
a given fishery? What is the value of collecting additional data? What is an
appropriate stop-gap management approach as more data are collected?

1.1 Data-Limited Methods Toolkit

The Data-Limited Methods Toolkit (DLMtool), a collaboration between the
University of British Columbia’s (UBC) Institute for Oceans and Fisheries
and the Natural Resources Defense Council (NRDC), is aimed at addressing
these questions by offering a powerful, transparent approach to comparing,
selecting, and applying various data-limited management methods. DLMtool
uses management strategy evaluation (MSE) and parallel computing to make
powerful diagnostics accessible.

A streamlined command structure and operating model builder allow for rapid
simulation testing and graphing of results. The package is relatively easy to use
for those inexperienced in R, however, complete access and control is available
to more experienced users.

While DLMtool includes over 115 management procedures it is also designed to

9

10 CHAPTER 1. INTRODUCTION

be extensible in order to encourage the development and testing of new methods.
The package is structured such that the same management methods that are
tested by the MSE can be applied to provide management recommendations
from real data.

Easy incorporation of real data is a central advantage of the software. A set
of related functions automatically detect what management procedures can be
applied with currently available data, and what additional data are needed to
use currently unavailable methods.

The Toolkit has been developed in collaboration with fisheries scientists around
the globe. New features and functions have been added to the software package
to meet the needs or the particular fisheries and management contexts where
it has been applied. To date, the Toolkit has been used for management or
academic research in over 25 fisheries, including by the National Marine Fisheries
Service in the U.S. Mid-Atlantic and Caribbean regions, and by the California
Department of Fish & Wildlife.

1.2 Management Strategy Evaluation

At the core of the Data-Limited Methods Toolkit is an integrated management
strategy evaluation (MSE) function. Management strategy evaluation is a
computer simulation approach for testing prospective management options over
a wide range of possible realities for the fishery and the population. Ideally,
management options can be identified that are robust and perform well over all
credible scenarios for the fishery.

It is extremely difficult, perhaps impossible, to conduct large-scale experiments
to evaluate directly the trade-offs associated with fisheries management. Even
among well-studied fisheries, considerable uncertainty often exists regarding
stock status and the dynamics of the fishery, and it can be difficult to attribute
particular outcomes to distinct management actions. The mathematical descrip-
tion of fish population dynamics and the interaction with different exploitation
patterns, first developed by Beverton and Holt (1957), together with the advent
of powerful and affordable computers, has allowed the development of the MSE
approach (Butterworth, 2007; Punt et al. 2014).

Management strategy evaluation was originally developed by the International
Whaling Commission as a tool to evaluate the various trade-offs involved the
management of marine mammals, and to guide the decision-making process for
selecting an appropriate management strategy. Since its development in the
mid-1970s, MSE has become widely used in fisheries science and is routinely
applied to evaluate the trade-offs in alternative management strategies of many
of the world’s fisheries.

An MSE is usually comprised of three key components:

1.3. HOW DOES MANAGEMENT STRATEGY EVALUATION DIFFER FROM STOCK ASSESSMENT?11

1. an operating model that is used to simulate the stock and fleet dynamics,
2. an assessment method and harvest control rule model (interchangeably

referred to as management procedures, or management strategies)
that use the simulated fishery data from the operating model to estimate the
status of the (simulated) stock and provide management recommendations
(e.g., a total allowable catch (TAC) or effort control), and

3. an observation model that is used to generate the simulated observed
data that would typically be used in management (i.e., with realistic
imprecision and bias).

The management recommendations by each management procedure are then
fed-back into the operating model and projected forward one-time step. The
process of simulating the population dynamics of the fishery along with the
management process that feeds back and impacts the simulated fish population
is known as closed-loop simulation.

A benefit of closed-loop simulation is that it allows the direct comparison and
evaluation of alternative management strategies against perfect knowledge of the
simulated system; something that is impossible in the real world (Walters and
Martell, 2004). With the aid of computer simulation, it is possible to run many
hundreds of simulation runs for each management procedure being evaluated -
each representing a different possible simulated future of what could happen to
the fishery under various management strategies - and to take into account the
uncertainty in knowledge of the stock and fishery (i.e., errors in observation), as
well as the uncertainty in future environmental and ecological conditions that
are likely to affect the stock dynamics.

Through these simulations, MSE reveals the relative impacts of specified manage-
ment approaches to their fishery decades into the future and enables managers
to choose the approach that best achieves their management objectives, as
articulated through a set of well-defined performance metrics.

1.3 How does Management Strategy Evaluation
Differ from Stock Assessment?

Stock assessments are intended to provide one-off management advice, such as
a catch limit (e.g. 20,000 tonnes), based on historical data. However, a stock
assessment on its own provides no knowledge of the expected performance of
the assessment, harvest control rule, or management system in general.

In an assessment setting there is no way to know whether a simpler assessment
using other data might provide more robust performance (e.g. less overfishing,
more yield) over a time horizon that managers are considering (e.g. the next 30
years). Management strategy evaluation tests a range of management approaches
(of which an assessment linked to a harvest control rule is one such approach)

12 CHAPTER 1. INTRODUCTION

and offers a scientific basis for selecting a management approach. MSE does not
provide a catch-limit in tonnes, it identifies a modus operandi that will provide
the desired management performance (it is analogous to selecting a suitable
airplane via flight simulation testing rather than actually flying a plane to a
specific destination).

The advantage of MSE over stock assessment is that it is possible to consider a
much wider range of uncertainty in stock dynamics, fleet dynamics, and data
collection, which often better represents the state of knowledge (particularly for
data-limited stocks). No matter how much uncertainty is factored into the MSE,
a single management approach may be selected that can provide management
advice.

MSE was specifically introduced in controversial fishery settings where it was
not possible to decide the ‘best’ representation of the state of nature. In the end,
MSE was used to circumvent this problem by including all possible states of
nature, often revealing that the disputes were in fact inconsequential all along.

1.4 Assumed Knowledge

This User Guide assumes that you are using RStudio with an up-to-date version
of R and the latest version of the DLMtool installed.

You can check your version of R by typing version into the R console:
version

_
platform x86_64-w64-mingw32
arch x86_64
os mingw32
system x86_64, mingw32
status
major 3
minor 6.2
year 2019
month 12
day 12
svn rev 77560
language R
version.string R version 3.6.2 (2019-12-12)
nickname Dark and Stormy Night

You can also find the version of DLMtool (or any other package) by typing:
packageVersion('DLMtool')

[1] '5.4.2'

1.5. THE USER MANUAL 13

The DLMtool package has been designed so that it is accessible for all users and
does not assume a high level of knowledge of R. The functions and User Guide
have been constructed in such a way that a user with little experience with R
should be able to run the MSE and apply the methods to their data.

No programming experience is required to use the package. However, users of the
DLMtool should have some familiarity with R, and be comfortable with using
the command line. The User Guide attempts to explain the use of the DLMtool
in easy to follow steps, but familiarity with the most common R functions is
assumed.

The package is fully extensible, and more experienced R users are able to design
their own management procedures, develop new plotting functions, and other
customizations.

1.5 The User Manual

This user manual has been designed to introduce users to DLMtool and does not
assume prior knowledge of DLMtool or extensive knowledge of R. Some familiarity
with the concept of Management Strategy Evaluation and the commonly used
parameters and data types is assumed.

The user manual is continually being developed and we could use your help!

We’ve tried to design it from the perspective of someone who is brand new to
DLMtool. But there are undoubtedly many ways in which it can be improved.
Please contact us through our website or email us directly if you have any
questions or suggestions for improvement.

Bug or typos can be reported on the userguide GitHub issues page.

Pull requests with edits are most welcome.

1.6 DLMtool Bug Reports

The package is subject to ongoing development and testing. If you find a bug
or a problem please contact us or report an issue on GitHub so that it can be
fixed. If possible, please provide a minimal reproducible example so that we can
recreate the problem and fix it.

1.7 Version Notes

The current version of the DLMtool package is available for download from
CRAN.

http://www.datalimitedtoolkit.org/contact
https://github.com/DLMtool/DLMtool_Userguide/issues/new
https://github.com/DLMtool/DLMtool_Userguide/pulls
http://www.datalimitedtoolkit.org/contact
https://github.com/DLMtool/DLMtool/issues/new
https://CRAN.R-project.org/package=DLMtool

14 CHAPTER 1. INTRODUCTION

Version notes for previous versions of DLMtool can be found at DLMtool News

https://github.com/DLMtool/DLMtool/blob/master/NEWS.md

Getting Started with
DLMtool

15

Chapter 2

Getting Started

2.1 Required Software

To get started with the DLMtool you will need at least two things:

1. A current version of the R software installed on your machine.
2. The latest version of the DLMtool package.

2.1.1 The R Software

The R software can be freely downloaded from the CRAN website and is available
for all operating systems. Updated versions of R are released frequently, and it
is recommended that you have the latest version installed.

If you are using Windows OS, you can uses the installr package and the
updateR() function to update and install the latest version. Alternatively, head
to the CRAN website to download the latest version of R.

You can check your version of R by typing version into the R console:
version

_
platform x86_64-w64-mingw32
arch x86_64
os mingw32
system x86_64, mingw32
status
major 3
minor 6.2
year 2019

17

https://cran.r-project.org/
https://cran.r-project.org/

18 CHAPTER 2. GETTING STARTED

month 12
day 12
svn rev 77560
language R
version.string R version 3.6.2 (2019-12-12)
nickname Dark and Stormy Night

2.1.2 RStudio

RStudio is a freely available integrated development environment (IDE) for R.
It is not essential that you use RStudio, but it can make things a lot easier,
especially if you are new to R. This User Guide assumes that you are using
RStudio to operate the DLMtool.

It is important to be aware that RStudio and R are two different pieces of
software that must be installed separately. We recommend installing the R
software before downloading and installing RStudio.

2.2 Installing DLMtool

If this is the first time you are using DLMtool, you will need to install the
DLMtool package from CRAN.

2.2.1 Installing DLMtool using R Console

This can be done by running the command:
install.packages("DLMtool")

A prompt may appear asking you to select a CRAN mirror. It is best to pick
the mirror that is the closest geographical distance.

2.2.2 Installing DLMtool in RStudio

An alternative method to install the DLMtool package is to click the Packages
tab in the lower right panel in RStudio, and click Install. Check that Repository
(CRAN, CRANextra) is selected in the Install from: drop-down menu, type
DLMtool into the packages dialog box, and click Install.

The DLMtool package relies on a number of other R packages, which the
installation process will automatically install. The number of packages that are
installed, and the time it takes, will depend on what packages you already have
installed on your system (and your download speed).

https://www.rstudio.com/products/RStudio/

2.3. LOADING DLMTOOL 19

2.2.3 Updating the DLMtool Package

You will only need to install the DLMtool package once. However, the DLMtool
package is updated from time to time, and you will need to re-install from CRAN
for each new version.

This can be done by using the update.packages command:
update.packages("DLMtool")

2.2.4 Checking DLMtool version

You can confirm the version of DLMtool by typing:
packageVersion('DLMtool')

[1] '5.4.2'

2.3 Loading DLMtool

Once installed, the DLMtool package can be loaded into R by typing in the
command line:
library(DLMtool)

or locating the DLMtool package in the list of packages in RStudio and checking
the box.

You need to load the DLMtool package each time you start a new instance of R.

20 CHAPTER 2. GETTING STARTED

Chapter 3

A Very Quick Demo

Running an MSE with DLMtool is quite straightforward and only requires a
single line of code:
myMSE <- runMSE()

If you run this line (remember, if you haven’t already you must first run
library(DLMtool)) and see something similiar to the output shown here, then
DLMtool is successfully working on your system.

If the MSE did not run successfully, repeat the previous steps, ensuring that you
have the latest version of R and the DLMtool package. If still no success, please
contact us with a description of the problem and we will try to help.

Once an MSE is run, the results can be examined visually using plotting functions,
for example:
Pplot(myMSE)

21

http://www.datalimitedtoolkit.org/contact

22 CHAPTER 3. A VERY QUICK DEMO

0 20 40

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

AvC

34.5% POF
55.3% FMSY yield

F
/F

M
S

Y

0 20 40

0
1

2
3

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 36.9% < BMSY

22.7% < 0.5BMSY
14.7% < 0.1BMSY

B
/B

M
S

Y

0 20 40
0.

0
0.

5
1.

0
1.

5
2.

0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

DCAC

38.8% POF
69.7% FMSY yield

0 20 40

0
1

2
3

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 38.6% < BMSY

27% < 0.5BMSY
14.3% < 0.1BMSY

0 20 40

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

FMSYref

29.8% POF
99.9% FMSY yield

0 20 40

0
1

2
3

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 42.8% < BMSY

1% < 0.5BMSY
0% < 0.1BMSY

0 20 40

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

curE

37.7% POF
68.6% FMSY yield

0 20 40
0

1
2

3
Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 41% < BMSY

22.3% < 0.5BMSY
2.1% < 0.1BMSY

0 20 40

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

matlenlim

9.2% POF
63.5% FMSY yield

0 20 40

0
1

2
3

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 13.7% < BMSY

1.4% < 0.5BMSY
0% < 0.1BMSY

0 20 40

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

MRreal

37.7% POF
71.1% FMSY yield

0 20 40

0
1

2
3

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 37.7% < BMSY

14.5% < 0.5BMSY
0% < 0.1BMSY

Projection year

MSEobj

Or quantified in various ways, for example:
summary(myMSE)

Calculating Performance Metrics

Performance.Metrics
1 Probability of not overfishing (F<FMSY) Prob. F < FMSY (Years 1 - 50)
2 Spawning Biomass relative to SBMSY Prob. SB > 0.5 SBMSY (Years 1 - 50)
3 Average Annual Variability in Yield (Years 1-50) Prob. AAVY < 20% (Years 1-50)
4 Average Yield relative to Reference Yield (Years 41-50) Prob. Yield > 0.5 Ref. Yield (Years 41-50)
##
##
Performance Statistics:
MP PNOF P50 AAVY LTY
1 AvC 0.71 0.80 1.00 0.62
2 DCAC 0.64 0.76 1.00 0.65
3 FMSYref 0.68 0.99 1.00 1.00
4 curE 0.71 0.87 0.21 0.79
5 matlenlim 0.96 0.99 0.23 0.60
6 MRreal 0.71 0.92 0.23 0.80

Later sections of the user manual will describe more ways to evaluate the outputs
of the runMSE function. But first we will look at the most fundamental part of
MSE: the Operating Model.

Chapter 4

The Operating Model

The Operating Model (OM) is the main component of the MSE framework. The
OM is used to describe the characterstics of a fishery system and contains all the
parameters required to simulate the population and fleet dynamics, the collection
of data, and the application of a management procedure (e.g., implement a size
regulation, effort control, spatial closure, or catch limit).

4.1 OM Components

An OM is built from four separate components, each containing a set of parameter
values for different aspects of the simulation:

1. Stock - parameters describing the stock dynamics
2. Fleet - parameters describing the fishing fleet dynamics
3. Obs (Observation) - parameters describing the observation processes (how

the observed fishery data is generated from the simulated data)
4. Imp (Implementation) - parameters describing the management implemeta-

tion (how well the management regulations are implemented)

There are a number of example Stock, Fleet, Obs, and Imp parameter sets built
into DLMtool which make it easy to quickly construct an OM and run an MSE.

These parameter sets are referred to as Objects and have an associated Class.

4.1.1 Stock Object

The avail function can be used to examine the available Objects of a particular
Class.

For example, to see the available objects of class Stock:

23

24 CHAPTER 4. THE OPERATING MODEL

avail('Stock')

[1] "Albacore" "Blue_shark" "Bluefin_tuna" "Bluefin_tuna_WAtl" "Butterfish"
[6] "Herring" "Mackerel" "Porgy" "Rockfish" "Snapper"
[11] "Sole" "Toothfish"

This shows that there are 12 objects of class Stock. We can confirm the class of
this object by using the class function. For example, to examine the class of
the object Albacore:
class(Albacore)

[1] "Stock"
attr(,"package")
[1] "DLMtool"

As expected, the Albacore object is class Stock.

Let’s take a quick look at the contents of the Albacore Stock object:
slotNames(Albacore)

[1] "Name" "Common_Name" "Species" "maxage" "R0" "M" "M2"
[8] "Mexp" "Msd" "Mgrad" "h" "SRrel" "Perr" "AC"
[15] "Period" "Amplitude" "Linf" "K" "t0" "LenCV" "Ksd"
[22] "Kgrad" "Linfsd" "Linfgrad" "L50" "L50_95" "D" "a"
[29] "b" "Size_area_1" "Frac_area_1" "Prob_staying" "Fdisc" "Source"

The output tells us that there are 34 slots in the Albacore Stock object. Each
of these slots contains information relating to stock that is used in the MSE.

We can examine the information that is stored in the slots using the @ symbol.
For example, the name of the species in the Stock object is:
Albacore@Name

[1] "Albacore"

The maximum age parameter is:
Albacore@maxage

[1] 15

The values for the natural mortality (M) parameter for this stock are:
Albacore@M

[1] 0.35 0.45

Note that the natural mortality parameter (M) has two values, while the maxi-
mum age (maxage) only has one value.

4.1. OM COMPONENTS 25

The MSE in the DLMtool is a stochastic model, and almost all parameters are
drawn from a distribution. By default this distribution is assumed to be uniform,
and the two values for the M parameter represent the lower and upper bounds
of this uniform distribution.

Some parameters, such as maximum age (maxage), species name (Name), or
initial recruitment (R0) have only a single value and are fixed in the MSE.

You can see more information on the content of the Stock object by using the
help function:
class?Stock

4.1.2 Fleet Object

While the Stock object contains all the information relating to the fish stock
that is being modeled, the Fleet object is populated with information relating to
the fishing fleet and historical pattern of exploitation.

Like the Stock objects, there are a number of Fleet objects that are built into
the DLMtoo:
avail('Fleet')

[1] "DecE_Dom" "DecE_HDom" "DecE_NDom" "FlatE_Dom"
[5] "FlatE_HDom" "FlatE_NDom" "Generic_DecE" "Generic_FlatE"
[9] "Generic_Fleet" "Generic_IncE" "IncE_HDom" "IncE_NDom"
[13] "Low_Effort_Non_Target" "Target_All_Fish" "Targeting_Small_Fish"

Here we will look at the Generic_Fleet object.
class(Generic_Fleet)

[1] "Fleet"
attr(,"package")
[1] "DLMtool"
slotNames(Generic_Fleet)

[1] "Name" "nyears" "Spat_targ" "EffYears" "EffLower" "EffUpper" "Esd" "qinc"
[9] "qcv" "L5" "LFS" "Vmaxlen" "isRel" "LR5" "LFR" "Rmaxlen"
[17] "DR" "SelYears" "AbsSelYears" "L5Lower" "L5Upper" "LFSLower" "LFSUpper" "VmaxLower"
[25] "VmaxUpper" "CurrentYr" "MPA"

There are 27 slots in the Fleet object. The parameters in the Fleet object relate
to the exploitation pattern of the stock.

For example, the number of years that the stock has been exploited is specified
in the nyears slot:

26 CHAPTER 4. THE OPERATING MODEL

Generic_Fleet@nyears

[1] 50

As another example, the smallest length at full selection is specified in the LFS
slot:
Generic_Fleet@LFS

[1] 0.75 1.10

Note that by default the values in the LFS (and the L5 [smallest length at
5% selectivity]) slots are specified as multiples of the length of maturity (e.g.,
Albacore@L50). This is necessary because the Fleet objects built into the
DLMtool are all generic, in the sense that they can be used with any Stock
object.

You will notice that the isRel slot in the Generic_Fleet object is set to “TRUE”.
This means that the selectivity parameters are relative to the length of maturity
in the Stock object. Absolute values for the selectivity parameters can be used,
for example by specifying LFS and L5 to, say, 100 - 150 and 50 - 70 respectively.
The isRel parameter must then be set to “FALSE”, so that the Operating
Model knows that these selectivity values are in absolute terms, and does not
multiply them by the length of maturity (strange things may happen if the
model assumes that the size of first capture is 50 to 70 times greater than the
size of maturity!).

Note that all the parameters in the Fleet object have two values, representing the
minimum and maximum bounds of a uniform distribution (with some exceptions
that will be discussed in more detail later).

More information on the Fleet object can be found by typing:
class?Fleet

4.1.3 Obs Object

The third component for the Operating Model is the Obs (Observation) object.
This object contains all the information relating to how the fishery information
is generated inside the model.

Why do we need a Obs object?

Although the MSE may be conditioned on real data and information about the
fishery, all data is generated inside the model. Because it is a simulation model
and the data was generated by a computer, rather than some unobserved real
world process, the fishery data is known perfectly. In the real world, however,
all data sources and parameter estimates are subject to some observation error.

4.1. OM COMPONENTS 27

The degree of uncertainty may vary between different data types, and between
fisheries.

The advantage of the MSE process is that the performance of a management
procedure using the realistically noisy simulated data can be compared to the
performance under conditions of perfect knowledge. This comparison, which
unfortunately is never possible in the real world, can reveal important information
about the robustness (or sensitivity) of certain methods to variability and error
in particular data types. This knowledge can help to prioritize research to
reduce uncertainty in the parameters and data sets that are most crucial to the
performance of the method.

Like the other two objects, there are a number of built-in Obs objects in the
DLMtool.
avail('Obs')

[1] "Generic_Obs" "Imprecise_Biased" "Imprecise_Unbiased" "Perfect_Info" "Precise_Biased"
[6] "Precise_Unbiased"

Let’s take a look at the Imprecise_Unbiased object:
class(Imprecise_Unbiased)

[1] "Obs"
attr(,"package")
[1] "DLMtool"
slotNames(Imprecise_Unbiased)

[1] "Name" "Cobs" "Cbiascv" "CAA_nsamp" "CAA_ESS" "CAL_nsamp" "CAL_ESS"
[8] "Iobs" "Ibiascv" "Btobs" "Btbiascv" "beta" "LenMbiascv" "Mbiascv"
[15] "Kbiascv" "t0biascv" "Linfbiascv" "LFCbiascv" "LFSbiascv" "FMSYbiascv" "FMSY_Mbiascv"
[22] "BMSY_B0biascv" "Irefbiascv" "Brefbiascv" "Crefbiascv" "Dbiascv" "Dobs" "hbiascv"
[29] "Recbiascv"

There are 29 slots in Obs objects, each with information relating to the uncertainty
of a data type.

For example, the LenMbiascv slot defines the bias (coefficient of variability) in
the length of maturity:
Imprecise_Biased@LenMbiascv

[1] 0.2

This means that the assumed length of maturity that is generated by the
Operating Model, and used in the simulated application of a management
procedure, is not the ‘true’ value set in the Stock object, but a value sampled
with a 20% coefficient of variation.

More information on the Obs object can be found by typing:

28 CHAPTER 4. THE OPERATING MODEL

class?Obs

4.1.4 Imp Object

The final component for the Operating Model is the Imp (Implementation) object.
This object contains all the information relating to how the management recom-
mendation is actually implemented in the fishery, i.e., the implementation error.
The Imp object includes slots for the over or under catch of TAC, implementation
error in total allowable effort, and variability in size regulations.
avail('Imp')

[1] "Overages" "Perfect_Imp"
class(Overages)

[1] "Imp"
attr(,"package")
[1] "DLMtool"

More information on the Imp object can be found by typing:
class?Imp

4.2 Plotting OM Components

The OM Components Stock, Fleet, Obs, and Imp can be plotted to visually
examine the contents.

For example, to plot a Stock object (note that the figures are not shown here):
plot(Albacore)

To plot a Fleet object you must also provide an object of class Stock, for example:
plot(FlatE_Dom, Albacore)

The Obs and Imp objects can also be plotted:
plot(Generic_Obs)
plot(Overages)

4.3 Building an OM from Component Objects

We will now look at how to combine objects of the four classes into an OM. For
now we will work with the OM components that are built into DLMtool. In

4.3. BUILDING AN OM FROM COMPONENT OBJECTS 29

later sections of the user manual we will cover how to build your own Stock,
Fleet, Obs, and Imp objects that characterises your fishery.

Objects of class Stock, Fleet, Obs and Imp are used to create an Operating Model
object (class OM). The simplest way to do this is to use new command.

For example, here we are building a OM using the Rockfish Stock object,
Generic_Fleet Fleet object, Generic_Obs Obs object, and Perfect_Imp Imp
object and assigning it the name myOM:
myOM <- new("OM", Rockfish, Generic_Fleet, Generic_Obs, Perfect_Imp)

What is the class of our newly created objects myOM?
class(myOM)

[1] "OM"
attr(,"package")
[1] "DLMtool"

If you use the slotNames function on the myOM object that was just created, you
will see that it contains all of the information from the Stock, Fleet, Obs, and
Imp objects:
slotNames(myOM)

[1] "Name" "Agency" "Region" "Sponsor" "Latitude" "Longitude" "nsim"
[8] "proyears" "interval" "pstar" "maxF" "reps" "cpars" "seed"
[15] "Source" "Common_Name" "Species" "maxage" "R0" "M" "M2"
[22] "Mexp" "Msd" "Mgrad" "h" "SRrel" "Perr" "AC"
[29] "Period" "Amplitude" "Linf" "K" "t0" "LenCV" "Ksd"
[36] "Kgrad" "Linfsd" "Linfgrad" "L50" "L50_95" "D" "a"
[43] "b" "Size_area_1" "Frac_area_1" "Prob_staying" "Fdisc" "nyears" "Spat_targ"
[50] "EffYears" "EffLower" "EffUpper" "Esd" "qinc" "qcv" "L5"
[57] "LFS" "Vmaxlen" "isRel" "LR5" "LFR" "Rmaxlen" "DR"
[64] "SelYears" "AbsSelYears" "L5Lower" "L5Upper" "LFSLower" "LFSUpper" "VmaxLower"
[71] "VmaxUpper" "CurrentYr" "MPA" "Cobs" "Cbiascv" "CAA_nsamp" "CAA_ESS"
[78] "CAL_nsamp" "CAL_ESS" "Iobs" "Ibiascv" "Btobs" "Btbiascv" "beta"
[85] "LenMbiascv" "Mbiascv" "Kbiascv" "t0biascv" "Linfbiascv" "LFCbiascv" "LFSbiascv"
[92] "FMSYbiascv" "FMSY_Mbiascv" "BMSY_B0biascv" "Irefbiascv" "Brefbiascv" "Crefbiascv" "Dbiascv"
[99] "Dobs" "hbiascv" "Recbiascv" "TACFrac" "TACSD" "TAEFrac" "TAESD"
[106] "SizeLimFrac" "SizeLimSD"

You can access individual slots in the OM object using the @ symbol and confirm
that these values are the same as those in the Stock object used to create the
OM:
Rockfish@M

[1] 0.04 0.08

30 CHAPTER 4. THE OPERATING MODEL

myOM@M

[1] 0.04 0.08

In addition to the information from the Stock, Fleet, Obs, and Imp objects, the
OM object also contains other values relating to the MSE, including the number
of simulations to run (nsim), the number of projection years (proyears), and
the management interval (interval):
myOM@nsim

[1] 48
myOM@proyears

[1] 50
myOM@interval

[1] 4

These slots all have default values that can be modified easily, for example:
myOM@proyears <- 60

Remember, you can access the help information for objects by typing ? followed
by the class name, for example:
class?OM

In later chapters we will cover a range of methods to build new Stock, Fleet,
Obs, and Imp objects and constructing OMs that characterise your fishery.

4.4 Visualizing an OM

The newly created OM object myOM contains all the parameters that will be used
to simulate our fishery, both the historical conditions and the future projections.
The OM can visualized with the plot function (plots not shown here):
plot(myOM)

Chapter 5

Management Procedures

The purpose of an MSE is to compare the performance of alternative management
approaches, or Management Procedures to identify the method that is most
likely to meet the management objectives for the fishery.

5.1 What is a Management Procedure?

In essence, a Management Procedure is simply a set of rules which define how a
fishery will be managed. These rules can range from simple harvest policies to
more complex arrangements.

For example, a simple Management Procedure may be a constant catch policy,
where the annual total allowable catch (TAC) is set a some fixed value. Alter-
natively, a more complex Management Procedure may involve multiple data
sources, with rules that increase or reduce the TAC in response to trends in one
or several indicators.

Management Procedures can differ in data requirements and complexity. How-
ever, all Management Procedures have one thing in common. They take fishery
information and return a management recommendation.

To be included in an MSE, a Management Procedure must be reproducible and
able to be coded in a set of instructions. While fisheries are sometimes managed
by expert judgment, it is difficult to reproduce the subjective decision-making
process in a computer simulation and include such methods in an MSE.

31

32 CHAPTER 5. MANAGEMENT PROCEDURES

5.2 Available Management Procedures

All management procedures in DLMtool are objects (actually functions in this
case) of class MP. There are a number of MPs built into DLMtool. The avail
function can be used to provide a list of MPs that can be included in the MSE:
avail('MP')

[1] "AvC" "AvC_MLL" "BK" "BK_CC" "BK_ML" "CC1" "CC2"
[8] "CC3" "CC4" "CC5" "CompSRA" "CompSRA4010" "CurC" "curE"
[15] "curE75" "DAAC" "DBSRA" "DBSRA_40" "DBSRA4010" "DCAC" "DCAC_40"
[22] "DCAC_ML" "DCAC4010" "DCACs" "DD" "DD4010" "DDe" "DDe75"
[29] "DDes" "DepF" "DTe40" "DTe50" "DynF" "EtargetLopt" "Fadapt"
[36] "Fdem" "Fdem_CC" "Fdem_ML" "FMSYref" "FMSYref50" "FMSYref75" "Fratio"
[43] "Fratio_CC" "Fratio_ML" "Fratio4010" "GB_CC" "GB_slope" "GB_target" "Gcontrol"
[50] "HDAAC" "ICI" "ICI2" "Iratio" "Islope1" "Islope2" "Islope3"
[57] "Islope4" "IT10" "IT5" "Itarget1" "Itarget1_MPA" "Itarget2" "Itarget3"
[64] "Itarget4" "ItargetE1" "ItargetE2" "ItargetE3" "ItargetE4" "ITe10" "ITe5"
[71] "ITM" "L95target" "LBSPR" "LBSPR_MLL" "Lratio_BHI" "Lratio_BHI2" "Lratio_BHI3"
[78] "LstepCC1" "LstepCC2" "LstepCC3" "LstepCC4" "LstepCE1" "LstepCE2" "Ltarget1"
[85] "Ltarget2" "Ltarget3" "Ltarget4" "LtargetE1" "LtargetE4" "matlenlim" "matlenlim2"
[92] "MCD" "MCD4010" "minlenLopt1" "MRnoreal" "MRreal" "NFref" "Rcontrol"
[99] "Rcontrol2" "SBT1" "SBT2" "slotlim" "SPmod" "SPMSY" "SPslope"
[106] "SPSRA" "SPSRA_ML" "YPR" "YPR_CC" "YPR_ML" "avgMP" "NMref"
[113] "TCPUE" "TCPUE_e" "THC"

As you can see, there are 115 MPs built into the DLMtool.

DLMtool is extensible and it is relatively straightforward to develop your own
MPs and include them in the MSE. This is covered in Developing Custom
Management Procedures.

5.3 Types of Management Procedure

In previous versions of DLMtool, the MPs were divided into two classes: Output
controls which returned a total allowable catch (TAC) and Input controls which
allow regulation of fishing effort, size selectivity, or spatial area.

Since DLMtool V5.1 it is possible to include MPs that provide a combination of
input and output controls.

All MPs in DLMtool are now class MP, but the MPs are divided into four types:
Input which allow regulation offishing effort, size selectivity, or spatial area
but not a TAC, Output which return only a TAC recommendation, Mixed
which return a combination of one or several input controls and a TAC, and
Reference which are MPs that have been designed to be used as reference

5.3. TYPES OF MANAGEMENT PROCEDURE 33

management procedures (e.g FMSYref which uses perfect information of FMSY
and abundance).

The MPtype function can be used to display the type for a particular MP, for
example:
MPtype("DCAC")

MP Type Recs
1 DCAC Output TAC

This tells us that DCAC is an Output control MP and returns a management
recommendation in the form of a total allowable catch limit (TAC).

Here we list all available MPs:
MPtype(avail('MP'))

MP Type Recs
1 curE Input TAE
2 curE75 Input TAE
3 DDe Input TAE
4 DDe75 Input TAE
5 DDes Input TAE
6 DTe40 Input TAE
7 DTe50 Input TAE
8 EtargetLopt Input TAE
9 ItargetE1 Input TAE
10 ItargetE2 Input TAE
11 ItargetE3 Input TAE
12 ItargetE4 Input TAE
13 ITe10 Input TAE
14 ITe5 Input TAE
15 LBSPR Input TAE
16 LBSPR_MLL Input SL
17 LstepCE1 Input TAE
18 LstepCE2 Input TAE
19 LtargetE1 Input TAE
20 LtargetE4 Input TAE
21 matlenlim Input SL
22 matlenlim2 Input SL
23 minlenLopt1 Input SL
24 MRnoreal Input Spatial
25 MRreal Input Spatial
26 slotlim Input SL
27 TCPUE_e Input TAE
28 AvC_MLL Mixed TAC, SL
29 Itarget1_MPA Mixed TAC, Spatial

34 CHAPTER 5. MANAGEMENT PROCEDURES

30 AvC Output TAC
31 BK Output TAC
32 BK_CC Output TAC
33 BK_ML Output TAC
34 CC1 Output TAC
35 CC2 Output TAC
36 CC3 Output TAC
37 CC4 Output TAC
38 CC5 Output TAC
39 CompSRA Output TAC
40 CompSRA4010 Output TAC
41 CurC Output TAC
42 DAAC Output TAC
43 DBSRA Output TAC
44 DBSRA_40 Output TAC
45 DBSRA4010 Output TAC
46 DCAC Output TAC
47 DCAC_40 Output TAC
48 DCAC_ML Output TAC
49 DCAC4010 Output TAC
50 DCACs Output TAC
51 DD Output TAC
52 DD4010 Output TAC
53 DepF Output TAC
54 DynF Output TAC
55 Fadapt Output TAC
56 Fdem Output TAC
57 Fdem_CC Output TAC
58 Fdem_ML Output TAC
59 Fratio Output TAC
60 Fratio_CC Output TAC
61 Fratio_ML Output TAC
62 Fratio4010 Output TAC
63 GB_CC Output TAC
64 GB_slope Output TAC
65 GB_target Output TAC
66 Gcontrol Output TAC
67 HDAAC Output TAC
68 ICI Output TAC
69 ICI2 Output TAC
70 Iratio Output TAC
71 Islope1 Output TAC
72 Islope2 Output TAC
73 Islope3 Output TAC
74 Islope4 Output TAC
75 IT10 Output TAC

5.3. TYPES OF MANAGEMENT PROCEDURE 35

76 IT5 Output TAC
77 Itarget1 Output TAC
78 Itarget2 Output TAC
79 Itarget3 Output TAC
80 Itarget4 Output TAC
81 ITM Output TAC
82 L95target Output TAC
83 Lratio_BHI Output TAC
84 Lratio_BHI2 Output TAC
85 Lratio_BHI3 Output TAC
86 LstepCC1 Output TAC
87 LstepCC2 Output TAC
88 LstepCC3 Output TAC
89 LstepCC4 Output TAC
90 Ltarget1 Output TAC
91 Ltarget2 Output TAC
92 Ltarget3 Output TAC
93 Ltarget4 Output TAC
94 MCD Output TAC
95 MCD4010 Output TAC
96 Rcontrol Output TAC
97 Rcontrol2 Output TAC
98 SBT1 Output TAC
99 SBT2 Output TAC
100 SPmod Output TAC
101 SPMSY Output TAC
102 SPslope Output TAC
103 SPSRA Output TAC
104 SPSRA_ML Output TAC
105 YPR Output TAC
106 YPR_CC Output TAC
107 YPR_ML Output TAC
108 avgMP Output TAC
109 TCPUE Output TAC
110 THC Output TAC
111 FMSYref Reference TAC
112 FMSYref50 Reference TAC
113 FMSYref75 Reference TAC
114 NFref Reference TAC
115 NMref Reference TAC

You can access help documentation for the MPs in the usual fashion, for example:
?DCAC

36 CHAPTER 5. MANAGEMENT PROCEDURES

5.3.1 Input Control MPs

Input controls allow some combination of adjustments to fishing effort, size
selectivity, or spatial area.

The available input control MPs are:
avail("Input")

[1] "curE" "curE75" "DDe" "DDe75" "DDes" "DTe40" "DTe50" "EtargetLopt"
[9] "ItargetE1" "ItargetE2" "ItargetE3" "ItargetE4" "ITe10" "ITe5" "LBSPR" "LBSPR_MLL"
[17] "LstepCE1" "LstepCE2" "LtargetE1" "LtargetE4" "matlenlim" "matlenlim2" "minlenLopt1" "MRnoreal"
[25] "MRreal" "slotlim" "TCPUE_e"

Remember, to access help documentation:
?matlenlim

More information on input control MPs can be found in Beyond the Catch Limit.

5.3.2 Output Control MPs

The output control methods in the DLMtool provide a management recommen-
dation in the form of a TAC. Some output controls are stochastic, allowing
for uncertainty in the data or input parameters, and return a distribution of
recommended TACs.

Output control methods are very common in fisheries management, especially
in regions which have a tradition of managing fisheries by regulating the total
amount of catch.

The available output controls are:
avail('Output')

[1] "AvC" "BK" "BK_CC" "BK_ML" "CC1" "CC2" "CC3" "CC4"
[9] "CC5" "CompSRA" "CompSRA4010" "CurC" "DAAC" "DBSRA" "DBSRA_40" "DBSRA4010"
[17] "DCAC" "DCAC_40" "DCAC_ML" "DCAC4010" "DCACs" "DD" "DD4010" "DepF"
[25] "DynF" "Fadapt" "Fdem" "Fdem_CC" "Fdem_ML" "Fratio" "Fratio_CC" "Fratio_ML"
[33] "Fratio4010" "GB_CC" "GB_slope" "GB_target" "Gcontrol" "HDAAC" "ICI" "ICI2"
[41] "Iratio" "Islope1" "Islope2" "Islope3" "Islope4" "IT10" "IT5" "Itarget1"
[49] "Itarget2" "Itarget3" "Itarget4" "ITM" "L95target" "Lratio_BHI" "Lratio_BHI2" "Lratio_BHI3"
[57] "LstepCC1" "LstepCC2" "LstepCC3" "LstepCC4" "Ltarget1" "Ltarget2" "Ltarget3" "Ltarget4"
[65] "MCD" "MCD4010" "Rcontrol" "Rcontrol2" "SBT1" "SBT2" "SPmod" "SPMSY"
[73] "SPslope" "SPSRA" "SPSRA_ML" "YPR" "YPR_CC" "YPR_ML" "avgMP" "TCPUE"
[81] "THC"

5.3. TYPES OF MANAGEMENT PROCEDURE 37

5.3.3 Mixed MPs

Mixed MPs return a combination of input and output controls. Currently there
are only a few mixed MPs in DLMtool, and these were developed simply for
demonstration purposes. They may not work very well! See Developing Custom
Management Procedures for more information on developing your own mixed
MPs. And please share them with us, we’d love to add them to DLMtool!
avail('Mixed')

[1] "AvC_MLL" "Itarget1_MPA"

5.3.4 Reference MPs

The final type is the reference MPs. These MPs are not designed to be used
in practice, but are useful for providing a reference for comparing for the
performance of other MPs. For example, the FMSYref and NFref methods
(fishing perfectedly at F[MSY] and no fishing at all) can be useful for framing
realistic performance with respect to a set of management objectives.

The available reference MPs are:
avail('Reference')

[1] "FMSYref" "FMSYref50" "FMSYref75" "NFref" "NMref"

http://www.datalimitedtoolkit.org/contact

38 CHAPTER 5. MANAGEMENT PROCEDURES

Chapter 6

Running the MSE

We have now covered the two main components of the MSE: the Operating
Model (OM) and the Management Procedures (MPs). To run a MSE we need
to specify the OM and the set of MPs that we wish to test.

Here we will create an OM from the built-in objects and choose 2 MPs of each
type to test in our demonstration MSE.

6.1 Specify an Operating Model

First, we will construct the OM using a different set of built-in Stock, Fleet, Obs,
and Imp objects:
myOM <- new("OM", Albacore, DecE_Dom, Imprecise_Unbiased, Overages)

6.2 Choose the Management Procedures

Next, we’ll select 8 MPs to test in our MSE:
myMPs <- c('AvC', 'Itarget1', 'matlenlim', 'ITe10',

'AvC_MLL', 'Itarget1_MPA', 'FMSYref', 'NFref')

MPtype(myMPs)

MP Type Recs
1 matlenlim Input SL
2 ITe10 Input TAE
3 AvC_MLL Mixed TAC, SL
4 Itarget1_MPA Mixed TAC, Spatial

39

40 CHAPTER 6. RUNNING THE MSE

5 AvC Output TAC
6 Itarget1 Output TAC
7 FMSYref Reference TAC
8 NFref Reference TAC

See Determining Feasible and Available Management Procedures for information
on how to identify management procedures that are potentially suitable for your
fishery.

6.3 Run the MSE

Now that we have specified an OM and chosen a set of management procedures
we are ready to run the MSE:
myMSE <- runMSE(OM=myOM, MPs=myMPs)

This may take a minute or two to run. We have now conducted a Management
Strategy Evaluation for our fishery described in the Operating Model with 8
Management Procedures. Next we will evaluate whether the model has converged
and then look at the MSE results.

Chapter 7

Checking Convergence

It is important to ensure that we have included enough simulations in the MSE
for the results to be stable.

The Converge function can be used to confirm that the number of simulations is
sufficient and the MSE model has converged, by which we mean that the relative
position of the Management Procedures are stable with respect to different
performance metrics and the performance statistics have stablized, i.e., they
won’t change significantly if the model was run with more simulations.

The purpose of the Converge function is to answer the question: have I run
enough simulations?

By default the Converge function includes three commonly used performance
metrics, and plots the performance statistics against the number of simulations.
The convergence diagnostics are:

1. Does the order of the MPs change as more simulations are added? By
default this is calculated over the last 20 simulations.

2. Is the average difference in the performance statistic over the last 20
simulations changing by more than 2%?

The number of simulations to calculate the convergence statistics, the mini-
mum change threshold, and the performance metrics to use can be specified
as arguments to the function. See the help documentation for more details
(?Converge).
Converge(myMSE)

Checking if order of MPs is changing in last 20 iterations

Checking average difference in PM over last 20 iterations is > 0.5

Plotting MPs 1 - 8

41

42 CHAPTER 7. CHECKING CONVERGENCE

##
Yield relative to Reference Yield (Years 1-50)

Order over last 20 iterations is not consistent for:
AvC
Order over last 20 iterations is not consistent for:
AvC_MLL
Order over last 20 iterations is not consistent for:
Itarget1
Order over last 20 iterations is not consistent for:
Itarget1_MPA
Order over last 20 iterations is not consistent for:
ITe10

Mean difference over last 20 iterations is > 0.5 for:
AvC
Mean difference over last 20 iterations is > 0.5 for:
Itarget1
Mean difference over last 20 iterations is > 0.5 for:
matlenlim
Mean difference over last 20 iterations is > 0.5 for:
Itarget1_MPA

##
Spawning Biomass relative to SBMSY

Mean difference over last 20 iterations is > 0.5 for:
AvC
Mean difference over last 20 iterations is > 0.5 for:
ITe10

##
Average Annual Variability in Yield (Years 1-50)

Order over last 20 iterations is not consistent for:
AvC_MLL
Order over last 20 iterations is not consistent for:
Itarget1

Mean difference over last 20 iterations is > 0.5 for:
AvC
Mean difference over last 20 iterations is > 0.5 for:
Itarget1
Mean difference over last 20 iterations is > 0.5 for:
ITe10
Mean difference over last 20 iterations is > 0.5 for:
AvC_MLL
Mean difference over last 20 iterations is > 0.5 for:
Itarget1_MPA

43

AvC
Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA

0

25

50

75

100

30 35 40 45
Simulations

M
ea

n
R

el
at

iv
e

Y
ie

ld
 (

Ye
ar

s
1−

50
)

Yield relative to Reference Yield (Years 1−50)

AvC

ITe10

75

80

85

90

95

100

30 35 40 45
Simulations

P
ro

b.
 S

B
 >

 0
.1

 S
B

M
S

Y
 (

Ye
ar

s
1

−
 5

0)

Spawning Biomass relative to SBMSY

AvC

Itarget1

ITe10

AvC_MLL

Itarget1_MPA

25

50

75

100

30 35 40 45
Simulations

P
ro

b.
 A

A
V

Y
 <

 2
0%

 (
Ye

ar
s

1−
50

)

Average Annual Variability in Yield (Years 1−50)

Yield P10 AAVY
MPs Not Converging 4 2 5

44 CHAPTER 7. CHECKING CONVERGENCE

Unstable MPs 5 0 2

Have we run enough simulations?

The convergence plot reveals that both the order of the MPs and the performance
statistics are not stable. This suggests that 48 simulations is not enough to
produce reliable results.

Let’s increase the number of simulations and try again:
myOM@nsim <- 200

myMSE_200 <- runMSE(OM=myOM, MPs=myMPs)

Is 200 simulations enough?
Converge(myMSE_200)

Checking if order of MPs is changing in last 20 iterations

Checking average difference in PM over last 20 iterations is > 0.5

Plotting MPs 1 - 8

45

0

25

50

75

100

185 190 195 200
Simulations

M
ea

n
R

el
at

iv
e

Y
ie

ld
 (

Ye
ar

s
1−

50
)

Yield relative to Reference Yield (Years 1−50)

70

80

90

100

185 190 195 200
Simulations

P
ro

b.
 S

B
 >

 0
.1

 S
B

M
S

Y
 (

Ye
ar

s
1

−
 5

0)

Spawning Biomass relative to SBMSY

25

50

75

100

185 190 195 200
Simulations

P
ro

b.
 A

A
V

Y
 <

 2
0%

 (
Ye

ar
s

1−
50

)

Average Annual Variability in Yield (Years 1−50)

Yield P10 AAVY
MPs Not Converging 0 0 0

46 CHAPTER 7. CHECKING CONVERGENCE

Unstable MPs 0 0 0

Chapter 8

Examining the MSE
Results

Arguably the most important part of the MSE is interpreting the results and
identifying a management procedure (MP) that is most suitable for the fishery.

This involves asking several questions:

1. Which MPs can be excluded from the list of candidates because they
perform worst than all other options?

2. Which MPs are most likely to meet our management objectives?
3. How do we identify the MP most suited to our fishery?
4. Which data sources are most critical to the performance of the best

performing MP?

8.1 Introducing Performance Metrics

To interpret the MSE results it is important that a clear set of performance
metrics have been defined. Fisheries managers often have broadly defined policy
goals. These conceptual objectives must be translated to quantitative operational
objectives so that the MSE results can be used to evaluate performance against
the specified management objectives.

For example, suppose that the fishery managers had stated broad goals to
maximize yield from the fishery while minimizing the risk of the stock collapsing
to unacceptably low levels. In order to use MSE to determine which MPs are
most likely to meet these objectives it is neccessary to be more specific:

• What are unacceptable low stock levels? Some fraction of unfished biomass?
The lowest observed historical biomass?

47

48 CHAPTER 8. EXAMINING THE MSE RESULTS

• What is an acceptable level of risk? What chance are we willing to tolerate
that the stock will fall below that limit?

• How much yield are we willing to give up in order to increase the probability
of the stock staying above unacceptably low limit?

It is important to recognize that performance metrics can vary considerably
between different fisheries and management structures, but are a crucial compo-
nent of the MSE and must be carefully defined before the analysis is carried out.
The Performance Metrics chapter discusses this topic in more detail.

The DLMtool includes a number of commonly used performance metrics and
a series of functions to summarize MP performance. The MSE results can be
examined either graphically in a plot or summarized in a table. Advanced users
can also develop their own plotting and summary functions (see the Custom
Performance Metrics chapter for more details).

Here we briefly demonstrate some of the plotting and summary functions in
DLMtool. The Examining the MSE object chapter and other chapters in that
section describe the process of evaluating MSE results in more detail.

8.2 Summary Table

The summary function can be used to generate a table of MP performance with
respect to a set of performance metrics:
summary(myMSE_200)

Calculating Performance Metrics

Performance.Metrics
1 Probability of not overfishing (F<FMSY) Prob. F < FMSY (Years 1 - 50)
2 Spawning Biomass relative to SBMSY Prob. SB > 0.5 SBMSY (Years 1 - 50)
3 Average Annual Variability in Yield (Years 1-50) Prob. AAVY < 20% (Years 1-50)
4 Average Yield relative to Reference Yield (Years 41-50) Prob. Yield > 0.5 Ref. Yield (Years 41-50)
##
##
Performance Statistics:
MP PNOF P50 AAVY LTY
1 AvC 0.42 0.56 0.94 0.48
2 Itarget1 0.86 0.93 0.92 0.80
3 matlenlim 0.97 0.99 0.09 0.60
4 ITe10 0.33 0.62 0.23 0.66
5 AvC_MLL 0.83 0.95 0.76 0.94
6 Itarget1_MPA 0.83 0.93 0.96 0.80
7 FMSYref 0.22 0.94 0.98 1.00
8 NFref 1.00 1.00 1.00 0.00

8.3. PLOTTING MSE RESULTS 49

By default the summary function includes four performance metrics, and displays
the probability that:

1. fishing mortality (F) is below FMSY, i.e Not Overfishing (PNOF)
2. spawning biomass (SB) is above half of biomass at maximum sustainable

yield (SBMSY) (P50)
3. average interannual variability in yield is less than 20% (AAVY)
4. long-term yield (last 10 years of projection period) is above half of the

maximum yield obtainable at a constant fishing rate (LTY)

In this example we can see that probability of SB > 0.5SBMSY for AvC is 0.56.

The performance metrics have been defined in such a way that a higher number
is always better (e.g, probability of Not Overfishing rather than Overfishing
where a lower probability would be more desirable).

Help documentation for the peformance metrics can be found in the usual way,
for example:
?PNOF

The performance metrics in the summary function are completely customizable.
See the Performance Metrics and Custom Performance Metrics chapters for more
details.

8.3 Plotting MSE Results

DLMtool includes several functions for plotting the MSE results. You can see
a list of all the plotting functions in the DLMtool for MSE objects using the
plotFun function:
plotFun()

DLMtool functions for plotting objects of class MSE are:

barplot COSEWIC_Dplot COSEWIC_Hplot COSEWIC_Pplot Cplot
DFO_plot DFO_plot2 DFO_proj IOTC_plot Kplot
NOAA_plot NOAA_plot2 plotOM Pplot Pplot2
PWhisker Tplot Tplot_old Tplot2 Tplot2_old
Tplot3 TradePlot TradePlot_old VOI VOI2
VOIplot VOIplot2 wormplot

Here we demonstrate a few of the plotting functions for the MSE results.

8.3.1 Trade-Off Plots

The Tplot function creates four plots that show the trade-off between the
probability that the long-term expected yield is greater than half of the highest

50 CHAPTER 8. EXAMINING THE MSE RESULTS

obtainable yield at a fixed F (reference yield) against the probability of:

1. Not overfishing in all projection years (F/FMSY < 1)
2. Spawning biomass (SB) above SBMSY in all projection years (SB > SBMSY)
3. Spawning biomass above 0.5SBMSY (SB > 0.5SBMSY)
4. Spawning biomass above 0.1SBMSY (SB > 0.1SBMSY)

The Tplot function includes minimum acceptable risk thresholds indicated by
the horizontal and vertical gray shading. These thresholds can be adjusted be
the Lims argument to the Tplot function. See ?Tplot for more information on
adjusting the risk thresholds.

MPs that fail to meet one or both of the risk thresholds for each axis are shown in
italics text. The Tplot function returns a data frame showing the performance
of each MP with respect to the 5 performance metrics, and whether the MP is
Satisificed, i.e., if it meets the minimum performance criteria for all performance
metrics.
Tplot(myMSE_200)

AvC

Itarget1

matlenlimITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. F < FMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC

Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC

Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC

Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Mixed
Output
Reference

MP PNOF LTY P100 P50 P10 Satisificed
1 AvC 0.42 0.48 0.43 0.56 0.70 FALSE

8.3. PLOTTING MSE RESULTS 51

2 Itarget1 0.86 0.80 0.83 0.93 0.99 TRUE
3 matlenlim 0.97 0.60 0.95 0.99 1.00 TRUE
4 ITe10 0.33 0.66 0.34 0.62 0.91 FALSE
5 AvC_MLL 0.83 0.94 0.79 0.95 1.00 TRUE
6 Itarget1_MPA 0.83 0.80 0.82 0.93 1.00 TRUE
7 FMSYref 0.22 1.00 0.24 0.94 1.00 FALSE
8 NFref 1.00 0.00 0.98 1.00 1.00 FALSE

The Tplot2 function shows the trade-off between long-term and short-term
yield, and the trade-off between biomass being above 0.1BMSY and the expected
variability in the yield:
Tplot2(myMSE_200)

AvC

Itarget1

matlenlim ITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. Yield > 0.5 Ref. Yield (Years 1−10)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA
FMSYref NFref

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 A

A
V

Y
 <

 2
0%

 (
Ye

ar
s

1−
50

)

MP Type

Input
Mixed
Output
Reference

MP STY LTY P10 AAVY Satisificed
1 AvC 0.94 0.48 0.70 0.94 FALSE
2 Itarget1 0.64 0.80 0.99 0.92 TRUE
3 matlenlim 0.42 0.60 1.00 0.09 FALSE
4 ITe10 0.88 0.66 0.91 0.23 FALSE
5 AvC_MLL 0.87 0.94 1.00 0.76 FALSE
6 Itarget1_MPA 0.64 0.80 1.00 0.96 TRUE
7 FMSYref 0.96 1.00 1.00 0.98 TRUE
8 NFref 0.00 0.00 1.00 1.00 FALSE

The Tplot, Tplot2 and Tplot3 functions are part of a family of plotting functions
that are fully customizable, and designed to work with all Performance Metrics
objects. See ?Tplot and the Performance Metrics chapter for more information.

8.3.2 Wormplot

The wormplot function plots the likelihood of meeting biomass targets in future
years:

52 CHAPTER 8. EXAMINING THE MSE RESULTS

wormplot(myMSE_200)

c(1, MSEobj@proyears + 2)

NFref

c(1, MSEobj@proyears + 2)

matlenlim

c(1, MSEobj@proyears + 2)

AvC_MLL

c(1, MSEobj@proyears + 2)

FMSYref

0 10 20 30 40 50

c(1, MSEobj@proyears + 2)

c(
−

1,
 1

)

Itarget1_MPA

c(1, MSEobj@proyears + 2)

c(
−

1,
 1

)

Itarget1

c(1, MSEobj@proyears + 2)

c(
−

1,
 1

)

ITe10

c(1, MSEobj@proyears + 2)

c(
−

1,
 1

)

AvC

0 10 20 30 40 50

>75% prob.
<25% prob.

Probability of biomass above 50% BMSY for MSE

Projection year

F
ra

ct
io

n
of

 s
im

ul
at

io
ns

 a
bo

ve
 5

0%
 B

M
S

Y

The arguments to the wormplot function allow you to choose the reference level
for the biomass relative to BMSY , as well as the upper and lower bounds of the
colored bands.

8.3.3 Projection Plots

The Pplot function plots the trajectories of biomass, fishing mortality, and
relative yield for the Management Procedures.

By default, the Pplot function shows the individual trajectories of B/BMSY

and F/FMSY for each simulation:
Pplot(myMSE_200)

8.3. PLOTTING MSE RESULTS 53

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

AvC

57.3% POF
48.9% FMSY yield

F
/F

M
S

Y

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 56.6% < BMSY

48.3% < 0.5BMSY
28.5% < 0.1BMSY

B
/B

M
S

Y

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

Itarget1

8.1% POF
77.4% FMSY yield

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 13.5% < BMSY

6.2% < 0.5BMSY
0.5% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

matlenlim

5.8% POF
67.9% FMSY yield

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 9.6% < BMSY

0.9% < 0.5BMSY
0% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

ITe10

73.6% POF
51.1% FMSY yield

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 69.6% < BMSY

48.3% < 0.5BMSY
13.8% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

AvC_MLL

19.6% POF
89.7% FMSY yield

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 22.3% < BMSY

5.1% < 0.5BMSY
0% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

Itarget1_MPA

13.1% POF
72.9% FMSY yield

0 30
0

1
2

3
4

5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 13.9% < BMSY

5.7% < 0.5BMSY
0% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

FMSYref

76.5% POF
96.4% FMSY yield

0 30

0
1

2
3

4
5

Index
M

S
E

ob
j@

B
_B

M
S

Y
[1

, m
m

,] 74.1% < BMSY
8.2% < 0.5BMSY
0% < 0.1BMSY

0 30

0.
0

0.
5

1.
0

1.
5

2.
0

Index

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
,]

NFref

0% POF
0% FMSY yield

0 30

0
1

2
3

4
5

Index

M
S

E
ob

j@
B

_B
M

S
Y

[1
, m

m
,] 1% < BMSY

0.2% < 0.5BMSY
0% < 0.1BMSY

Projection year

MSEobj

The Pplot2 function has several additional arguments. The YVar argument can
be used to specify additional variables of interest. For example, here we have
included the projections of yield relative to the long-term optimum yield:
Pplot2(myMSE_200, YVar=c("B_BMSY", "F_FMSY", "Yield"))

MSE object has more than 6 MPs. Plotting the first 6

54 CHAPTER 8. EXAMINING THE MSE RESULTS

0.0

0.5

1.0

1.5

2.0

2.5

F
F

M
S

Y

AvC Itarget1 matlenlim ITe10 AvC_MLL Itarget1_MPA

0 20 40

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Y
ie

ld
 r

el
at

iv
e

 to
 L

on
g−

Te
rm

 O
pt

im
um

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Projection Years

The traj argument can be used to summarize the projections into quantiles.
Here we show the 20th and 80th percentiles of the distributions (the median
(50th percentile) is included by default):
Pplot2(myMSE_200, traj="quant", quants=c(0.2, 0.8))

MSE object has more than 6 MPs. Plotting the first 6

8.3. PLOTTING MSE RESULTS 55

0.0

0.5

1.0

1.5

2.0

2.5

F
F

M
S

Y

AvC
Percentile

50th (median)
20th and 80th

Itarget1 matlenlim ITe10 AvC_MLL Itarget1_MPA

0 20 40

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
S

B
S

S
B

M
S

Y

0 20 40 0 20 40 0 20 40 0 20 40 0 20 40

Projection Years

Details on additional controls for the Pplot and Pplot2 functions can be found
in the help documentation associated with this function.

8.3.4 Kobe Plots

Kobe plots are often used in stock assessment and MSE to examine the proportion
of time the stock spends in different states. A Kobe plot of the MSE results can
be produced with the Kplot function:
Kplot(myMSE_200)

56 CHAPTER 8. EXAMINING THE MSE RESULTS

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

0.0

0.5

1.0

1.5

2.0

2.5

Start
End

61.7% 0%

0% 38.3%

AvC

MSEobj@B_BMSY[1, mm, 1]
M

S
E

ob
j@

F
_F

M
S

Y
[1

, m
m

, 1
]

13.3%1.7%

5% 80%

Itarget1

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

3.3% 5%

6.7% 85%

matlenlim

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

90% 0%

5% 5%

ITe10

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

0.0

0.5

1.0

1.5

2.0

2.5

0.0 1.0 2.0 3.0

10% 1.7%

3.3% 85%

AvC_MLL

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

0.0 1.0 2.0 3.0

13.3% 5%

1.7% 80%

Itarget1_MPA

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]
0.0 1.0 2.0 3.0

58.3%15%

15%11.7%

FMSYref

MSEobj@B_BMSY[1, mm, 1]

M
S

E
ob

j@
F

_F
M

S
Y

[1
, m

m
, 1

]

0.0 1.0 2.0 3.0

0% 0%

0% 100%

NFref

B BMSY

F
F

M
S

Y

8.3.5 Compare to Current Conditions

The Cplot shows a scatter plot of the median biomass and median yield over
the last five years of the projection relative to the current conditions (the last
year in the historical period):
Cplot(myMSE_200)

8.3. PLOTTING MSE RESULTS 57

AvC

Itarget1

matlenlim

ITe10

AvC_MLL

Itarget1_MPA

FMSYref

NFref0.0

0.5

1.0

1.5

0 1 2 3
Median Spawning Biomass (last 5 years)

 relative to current

M
ed

ia
n

Y
ie

ld
 (

la
st

 5
 y

ea
rs

)
 r

el
at

iv
e

to
 c

ur
re

nt MP Type

Input
Mixed
Output
Reference

58 CHAPTER 8. EXAMINING THE MSE RESULTS

Chapter 9

Parallel Processing

Parallel processing increases the speed of running the MSE in DLMtool signif-
icantly. The use of parallel processing in DLMtool has changed slightly from
previous versions of the package.

By default the MSE runs without using parallel processing. We recommend
running a few test runs of your MSE with a low number of simulations and
without parallel processing. Once you are satisfied the model is running correctly
for your operating model, you can increase the number of simulations and use
parallel processing.

9.1 Setting up Parallel Processing

The setup function is used to set up parallel processing.
setup()

##
Stopping cluster

snowfall 1.84-6.1 initialized (using snow 0.4-3): parallel execution on 10 CPUs.

Library DLMtool loaded.

Library DLMtool loaded in cluster.

By default the setup function initializes half of the available processors as we
have found this to be the most efficient for most systems. You can change the
number of processors by specifying the cpu argument, e.g., setup(cpu=6).

See Determining Optimal Number of Processors for more details on calculating
the optimal number of processors to use on your system.

59

60 CHAPTER 9. PARALLEL PROCESSING

9.2 Running MSE with Parallel Processing

Use the parallel=TRUE argument in runMSE to use parallel processing. Note
that you must run setup() first.

You will notice that the usual update messages are not printed to the console
when parallel processing is used. This is why it is important to initially test
your MSE with a small number of simulations without parallel processing.
myMSE_200P <- runMSE(myOM, parallel = TRUE)

Running MSE in parallel on 10 processors

MSE completed

Parallel processing can increase the speed of running the MSE considerably. For
example, although in this demonstration we are only running a low number
of simulations, run time decreased from 4 to 22 seconds when using parallel
processing on 10 processors.

9.3 Determining Optimal Number of Processors

The optCPU function can be used to evaluate the relationship between number
of processors and run time:
optCPU()

2 4 6 8 10 12

20
30

40
50

60
70

80

cpus

tim
e

(s
ec

on
ds

)

9.3. DETERMINING OPTIMAL NUMBER OF PROCESSORS 61

ncpu time
1 1 78.42
2 2 37.11
3 3 36.93
4 4 21.30
5 5 20.28
6 6 21.38
7 7 20.49
8 8 20.37
9 9 20.91
10 10 21.08
11 11 20.53
12 12 20.74

62 CHAPTER 9. PARALLEL PROCESSING

Creating an Operating
Model

63

Chapter 10

Creating a New Operating
Model

10.1 An Example WorkFlow

The figure below shows our recommended workflow creating a new Operating
Model (OM) in DLMtool.

65

66 CHAPTER 10. CREATING A NEW OPERATING MODEL

10.2. CREATE A NEW PROJECT 67

10.2 Create a New Project

We recommend creating a new directory for each OM. Each new R session should
start by setting the working directory to this location. One of the easiest ways
to do this is to create a new project in RStudio (File > New Project) and open
this each time you revisit the analysis.

Alternatively, you can set the working directory with RStudio (Session > Set
Working Directory) or directly in the R console, for example:
setwd("C:/MSE/MyOM")

10.3 Initialize a New OM

The OMinit function is used to create a blank OM spreadsheet and a skeleton
OM documentation file in the working directory. This is only required the first
time a new OM is created.

The OMinit function requires one argument, a name for the OM, and wil create
two files in the working directory. For example OMinit('MyOM') will create
MyOM.xlsx and MyOM.rmd in the working directory.

MyOM.xlsx is a spreadsheet with sheets corresponding to the components of
an OM: Stock, Fleet, Obs, and Imp, and OM worksheets. The first column
in each sheet is populated with the names of the slots of the respective objects
(Stock, Fleet, etc) and all slots are empty (except the OM sheet which has default
values).

The filled grey cells represent optional parameters - these are not required to run
the MSE but may be used to further customized the OM (e.g age-dependant M).

Values are required for all other parameters.

The MyOM.rmd file can be opened in any text editor or RStudio, and contains
a skeleton for the OM documentation.

The OMinit function also creates several folders in the working directory: data,
docs, images, and robustness. These sub-directories can be used to store data,
documents, images, and other information that is reference in the OM Report.

10.3.1 Using Templates

Note: This feature requires additional software and may not be
available on all systems. Specifically, it requires a zip application
on the system PATH. Possibly the easiest way for this is to install
Rtools on your system. However, please note that this feature is not
required to use DLMtool.

https://cran.r-project.org/bin/windows/Rtools/

68 CHAPTER 10. CREATING A NEW OPERATING MODEL

Some users may wish to build an operating model based on other pre-existing
OM, Stock, Fleet, Obs, or Imp objects.

For example, OMinit('Albacore2', Albacore) will result in a Alba-
core2.xlsx file being created with the Stock sheet populated with the values
from the Albacore Stock object.

Other examples:
OMinit('StockAndFleet', Albacore, Generic_FlatE) # using existing Stock and Fleet objects

OMinit('ObsAndImp', Generic_Obs, Perfect_Imp) # using existing Obs and Imp objects

OMinit('BorrowOM', OtherOM) # using an existing OM

10.3.2 An Example

In this example we are going to create an OM called ‘MyOM’ using existing OM
objects:
OMinit('MyOM', Albacore, Generic_FlatE, Imprecise_Unbiased, Perfect_Imp)

We did this so that we can demonstrate the populated Excel and RMarkdown
Files.

To create a blank OM called ‘MyOM’ you would simply write:
OMinit('MyOM')

10.4 Populate and Document OM

Next we open Excel workbook and populate the OM.

Because we used templates our workbook is already populated. You can download
and inspect the populated OM workbook we created in the previous step.

To assist in documenting the rationale for the OM parameters, we recommended
adding a short but informative description or rationale for the OM values in
the RMarkdown file while the OM Excel file is being populated (open the
RMarkdown file and edit with any text editor or RStudio).

Once complete, the RMarkdown file can be compiled into a HTML report and
provides a complete documentation for the OM.

The RMarkdown file we created earlier can be accessed here and opened in
RStudio.

docs/ExampleOM/MyOM.xlsx
docs/ExampleOM/MyOM.rmd

10.5. COMPILE THE OM REPORT 69

You will see that the RMarkdown file has a series of headings (marked by #,
##, and ### for first, second and third level respectively) followed by some
text, in this case default text is mainly instructions on how to fill the document.

The instruction text should be deleted and replaced with the relevant information
for your operating model. For example, below the line “# Introduction” you
would delete the instructions and provide a brief introduction to your fishery
and the purpose of the OM and MSE.

It is important not to delete any of the headings.

After the Introduction section, the document has four first level headings cor-
responding to the Stock, Fleet, Obs and Imp components of the operating
model.

Each section has a series of second level headings (e.g., ## M) which correspond
to the slots of that object. In this example, the text below these headings
indicates that this parameter was borrowed from another object (e.g ‘Borrowd
from: Albacore’).

If the parameters in the OM workbook are modified from those borrowed from
the existing object (in this case ‘Albacore’), you would delete this text and
replace it will your own justification.

If you did not initialize your OM using existing objects as templates, it will say
something like ‘No justification provided’.

It is not neccessary to include the actual values in the justification text. The
RMarkdown file containing the justifications/rationale will be compiled together
with the OM Excel workbook containing the OM parameter values into a OM
Report that contains both the justification text, the OM values, and a series of
plots to visualize the OM parameters and properties.

The OM documentation file should be updated whenever values in the OM are
changed.

10.5 Compile the OM Report

Once the OM has been specified in the spreadsheet and documented in the
RMarkdown file, it can be compiled into a OM Report using the OMdoc function.

The OMdoc function
OMdoc('MyOM')

In most cases it is not neccessary to provide the name of the RMarkdown file
to OMdoc. By default the OMdoc function will look for a file with the extension
‘.rmd’ in working directory. For example, if the Excel file is named MyOM then
OMdoc will look for MyOM.rmd, which is default name created by OMinit.

70 CHAPTER 10. CREATING A NEW OPERATING MODEL

Additionally, if there is only one xlsx file in the working directory the name of
the OM is not required, i.e., OMdoc().

The resulting MyOM.html can opened in any web browser. Because we have
not replaced any of the default text in the RMarkdown file, the resulting OM
Report contains the same text. In your case, this default text should be replaced
with information relevant to your OM.

It is also be possible to compile the OM report into a pdf using OMdoc('MyOM',
output="pdf_document"), although this may require the installation of addi-
tional software on your system.

10.6 Import the OM into R

The OM can be imported from the Excel file using the XL2OM function.

For example, to import the example OM created in the previous section:
OM <- XL2OM('MyOM')

The OM is now ready to be used for analysis, for example:
Plot the OM
plot(OM)

Run an MSE using default MPs
MyMSE <- runMSE(OM)

10.7 Documenting an Existing OM

To document existing OMs that don’t use the Excel workbook the OMinit
function can be used to create just the RMarkdown documentation file in the
working directory.

The OMdoc function can be used to generate an OM report directly from an OM
object and a RMarkdown file. In this case it is necessary to provide the name of
the Rmarkdown file to OMdoc.

For example, here we create an OM using existing objects from DLMtool,
generate the RMarkdown documentation skeleton (only required once), and
compile the OM report:
BlueSharkOM <- new('OM', Blue_shark, Generic_Fleet, Imprecise_Biased, Perfect_Imp)
OMinit('BlueSharkOM', files='rmd', BlueSharkOM)

docs/ExampleOM/MyOM.html

10.7. DOCUMENTING AN EXISTING OM 71

- Enter OM details in BlueSharkOM.rmd -
OMdoc(BlueSharkOM, 'BlueSharkOM.rmd')

The same process is used if you are using the cpars feature to provide custom
parameters to the MSE (see Custom Parameters section for more details).

72 CHAPTER 10. CREATING A NEW OPERATING MODEL

Chapter 11

Generating Correlated
Life-History Parameters

By default DLMtool independently samples the life-history parameters from
uniform distributions. The LH2OM function can be used to force correlation
between the life-history parameters, or predict values for missing life-history
parameters.

Thorson et al. (2017) developed a hierarchical model, based on records available
in FishBase, to predict life-history parameters for all 33,000+ fish species listed
within FishBase. The LH2OM function uses the Thorson et al. (2017) model to
generate correlated samples of the life-history parameters based on the relevant
taxonomic information (Class, Family, Genus, and Species) for the species being
modelled in the MSE.

The approach uses taxonomic information and any available information on the
life-history parameters of the species in the OM to generate predictions of the
missing parameters. For example, if no knowledge exists on the four life-history
parameters (Linf, L50, M, and K), the model uses the taxonomic information
(first Genus and Species, and if records don’t exist for this species in FishBase,
then up a taxonomic level to Family, and so on) to generate predicted values
for all four parameters. If information is available for some parameters, e.g.,
reasonable bounds on Linf and M for the species, the hierarchical model is
used to generate predictions of the corresponding L50 and K values. That is,
the observed ratios of L50/Linf and M/K are maintained. In this way the
simulated life-history strategies are biologically realistic, and are appropriate for
the species being modelled in the MSE.

73

www.fishbase.org

74CHAPTER 11. GENERATING CORRELATED LIFE-HISTORY PARAMETERS

11.1 Predicting all life-history parameters

The LH2OM function can be used to predict the four correlated life-history pa-
rameters (Linf, L50, M, and K) using only the available taxonomic information
(only for fish species).

For example, here we create an empty OM object, populate the Species slot and
use the LH2OM function to predict the life-history parameters using hierarchical
model (Thorson et al. 2017):
OM <- new("OM")

No Stock object found. Returning a blank OM object
OM@Species <- "Scomber japonicus"
OM <- LH2OM(OM)

Predicting Linf

Predicting L50

Predicting K

Predicting M

Species match: Actinopterygii Perciformes Scombridae Scomber japonicus

Asymptotic length (Linf)

40 42 44 46 48 25 26 27 28 29 30

40
48

0.22 0.26 0.30 0.34

40
48

0.45 0.50 0.55

40
48

40 42 44 46 48

25
29

Length at 50% maturity (L50)

25 26 27 28 29 30 0.22 0.26 0.30 0.34

25
29

0.45 0.50 0.55

25
29

40 42 44 46 48

0.
22

0.
36

25 26 27 28 29 30

0.
22

0.
36

Growth rate (K)

0.22 0.26 0.30 0.34 0.45 0.50 0.55

0.
22

0.
36

40 42 44 46 48

0.
45

25 26 27 28 29 30

0.
45

0.22 0.26 0.30 0.34

0.
45

Natural mortality rate (M)

0.45 0.50 0.55

11.2. PREDICTING SOME LIFE-HISTORY PARAMETERS 75

11.2 Predicting some life-history parameters

In some cases local estimates of life-history parameters may be available which
are more reliable and less variable than those predicted from the FishBase
database. For example, suppose that we had estimates of the natural mortality
rate (M) for our stock that ranged between 0.3 and 0.4. We populate the OM@M
slot with these values and use LH2OM to predict the correlated K parameter
values:
OM <- new("OM")

No Stock object found. Returning a blank OM object
OM@Species <- "Scomber japonicus"
OM@M <- c(0.3, 0.4)
OM <- LH2OM(OM)

Predicting Linf

Predicting L50

Predicting K

Predicting K from M

Species match: Actinopterygii Perciformes Scombridae Scomber japonicus

Asymptotic length (Linf)

40 42 44 46 48 25 26 27 28 29 30

40
48

0.18 0.22 0.26

40
48

0.30 0.34 0.38

40
48

40 42 44 46 48

25
29

Length at 50% maturity (L50)

25 26 27 28 29 30 0.18 0.22 0.26

25
29

0.30 0.34 0.38

25
29

40 42 44 46 48

0.
18

25 26 27 28 29 30

0.
18

Growth rate (K)

0.18 0.22 0.26 0.30 0.34 0.38

0.
18

40 42 44 46 48

0.
30

0.
40

25 26 27 28 29 30

0.
30

0.
40

0.18 0.22 0.26

0.
30

0.
40

Natural mortality rate (M)

0.30 0.34 0.38

Notice that the sampled M values are within the bounds specified in OM@M
(vertical lines).

76CHAPTER 11. GENERATING CORRELATED LIFE-HISTORY PARAMETERS

Similiarly, if information is also available for asymptotic length Linf :
OM <- new("OM")

No Stock object found. Returning a blank OM object
OM@Species <- "Scomber japonicus"
OM@M <- c(0.3, 0.4)
OM@Linf <- c(35, 40)
OM <- LH2OM(OM)

Predicting L50

Predicting K

Predicting L50 from Linf

Predicting K from M

Species match: Actinopterygii Perciformes Scombridae Scomber japonicus

Asymptotic length (Linf)

35 36 37 38 39 40 20 22 24

35
39

0.18 0.22 0.26

35
39

0.30 0.34 0.38

35
39

35 36 37 38 39 40

20
24

Length at 50% maturity (L50)

20 22 24 0.18 0.22 0.26

20
24

0.30 0.34 0.38

20
24

35 36 37 38 39 40

0.
18

20 22 24

0.
18

Growth rate (K)

0.18 0.22 0.26 0.30 0.34 0.38

0.
18

35 36 37 38 39 40

0.
30

20 22 24

0.
30

0.18 0.22 0.26

0.
30

Natural mortality rate (M)

0.30 0.34 0.38

11.3 Predicting correlated parameters

If bounds for all life-history parameters are specified in the OM, the LH2OM
function will predict values of L50 and K which may fall outside of the bounds
specified in the OM. For example, here we specify bounds for all life-history
parameters and see that the predicted values for L50 and K are mostly above and

11.3. PREDICTING CORRELATED PARAMETERS 77

below the bounds we specied in the OM slots (vertical lines and shading). This
is because the predictions of the L50/Linf and M/K ratios from the FishBase
database were outside the ranges specied in the OM; in other words, the ranges
specified in the OM have rarely been observed in nature.
OM <- new("OM")

No Stock object found. Returning a blank OM object
OM@Species <- "Scomber japonicus"
OM@M <- c(0.3, 0.4)
OM@K <- c(0.2, 0.3)
OM@Linf <- c(35, 40)
OM@L50 <- c(15, 20)
OM <- LH2OM(OM)

Predicting L50 from Linf

Predicting K from M

Species match: Actinopterygii Perciformes Scombridae Scomber japonicus

Asymptotic length (Linf)

35 36 37 38 39 40 20 22 24

35
39

0.18 0.22 0.26

35
39

0.30 0.34 0.38

35
39

35 36 37 38 39 40

20
24

Length at 50% maturity (L50)

16 18 20 22 24 0.18 0.22 0.26

20
24

0.30 0.34 0.38

20
24

35 36 37 38 39 40

0.
18

20 22 24

0.
18

Growth rate (K)

0.18 0.22 0.26 0.30 0.30 0.34 0.38

0.
18

35 36 37 38 39 40

0.
30

20 22 24

0.
30

0.18 0.22 0.26

0.
30

Natural mortality rate (M)

0.30 0.34 0.38

We can force the LH2OM function to only return values within the M and K
bounds by using the filterMK argument:
OM <- new("OM")

No Stock object found. Returning a blank OM object

78CHAPTER 11. GENERATING CORRELATED LIFE-HISTORY PARAMETERS

OM@Species <- "Scomber japonicus"
OM@M <- c(0.3, 0.4)
OM@K <- c(0.2, 0.3)
OM@Linf <- c(35, 40)
OM@L50 <- c(15, 20)
OM <- LH2OM(OM, filterMK=TRUE)

Predicting L50 from Linf

Predicting K from M

Filtering predicted K within bounds: 0.2 Filtering predicted K within bounds: 0.3

Species match: Actinopterygii Perciformes Scombridae Scomber japonicus

Asymptotic length (Linf)

35 36 37 38 39 40 21 22 23 24 25

36
39

0.20 0.24 0.28

36
39

0.32 0.36 0.40

36
39

36 37 38 39 40

21
25

Length at 50% maturity (L50)

16 18 20 22 24 0.20 0.24 0.28

21
25

0.32 0.36 0.40

21
25

36 37 38 39 40

0.
20

0.
28

21 22 23 24 25

0.
20

0.
28

Growth rate (K)

0.20 0.24 0.28 0.32 0.36 0.40

0.
20

0.
28

36 37 38 39 40

0.
32

21 22 23 24 25

0.
32

0.20 0.24 0.28

0.
32

Natural mortality rate (M)

0.30 0.34 0.38

11.4 Introducing Custom Parameters

The LH2OM function uses a feature of DLMtool called Custom Parameters, which
are stored in the OM@cpars slot.

By default the OM@cpars is an empty list:
OM <- new("OM")

No Stock object found. Returning a blank OM object

11.4. INTRODUCING CUSTOM PARAMETERS 79

str(OM@cpars)

list()

After using the LH2OM function, the cpars slot is populated with OM@nsim
correlated samples of the life-history parameters:
OM <- new("OM")

No Stock object found. Returning a blank OM object
OM@Species <- "Scomber japonicus"
OM@M <- c(0.3, 0.4)
OM <- LH2OM(OM, plot=FALSE, msg=FALSE)
str(OM@cpars)

List of 4
$ Linf: num [1:48] 42 44.4 42.8 48.3 42.7 ...
$ M : num [1:48] 0.38 0.383 0.339 0.385 0.335 ...
$ K : num [1:48] 0.226 0.232 0.206 0.246 0.187 ...
$ L50 : num [1:48] 26.2 27.8 27.1 30 25.7 ...

Notice also that the OM@M slot is no longer used after the LH2OM function has
been run on the OM object:
OM@M

[1] 0 0

Custom Parameters are a very powerful way to customize the DLMtool, and allow
users full control over all sampled and most internal parameters in the DLMtool
Operating Model. See the Custom Parameters chapter for more information on
this feature.

80CHAPTER 11. GENERATING CORRELATED LIFE-HISTORY PARAMETERS

Chapter 12

Modifying the OM

It is often desirable to created modified versions of an OM for testing purposes
such as series of robustness tests or to evaluate whether an MP is performing as
expected under ideal conditions.

DLMtool includes several functions for this purpose.

12.1 The tinyErr function

The tinyErr function can be used to remove observation, implementation, and
process error, as well as any gradients in life-history parameters. For example,
we first create an Operating Model using built-in OM Components:
OM <- new("OM", Albacore, Generic_IncE, Imprecise_Biased, Overages)

Notice that our OM includes process error and gradients in life-history parameters,
as well as observation and implementation error:
OM@Perr # recruitment process error

[1] 0.15 0.30
OM@Linfgrad # gradient in Linf

numeric(0)
OM@Cobs # error in observations

[1] 0.2 0.6
OM@TACFrac # implementation error in TAC

[1] 1.1 1.2

81

82 CHAPTER 12. MODIFYING THE OM

By default the tinyErr function will remove all sources of uncertainty and
variability:
OM2 <- tinyErr(OM)

Removing all Observation Error

Removing all Implementation Error

Removing all Process Error

Removing all Gradients
OM2@Perr # no recruitment process error

[1] 0 0
OM2@Linfgrad # no gradient in Linf

[1] 0 0
OM2@Cobs # very low observation error

[1] 0.00 0.05
OM2@TACFrac # no implementation error

[1] 1 1

The obs, imp, proc, and grad arguments to the tinyErr function can be used
to control which sources of error and variability to remove from the OM. See
?tinyErr for more details.

12.2 The Replace function

The can be used to replace individual Stock, Fleet, Obs, or Imp components in
an Operating Model.

For example, to replace the Stock object in an OM we provide Replace with a
new Stock object:
OM1 <- new("OM", Albacore, Generic_DecE, Generic_Obs, Overages)
OM2 <- Replace(OM1, Blue_shark, Name="Blue_shark OM based on OM1")

Replacing sub-model: Stock

Likewise, to replace any of the other OM components:
OM1 <- new("OM", Albacore, Generic_DecE, Generic_Obs, Overages)
OM2 <- Replace(OM1, Generic_IncE, Name="OM1 with new Fleet")

Replacing sub-model: Fleet

12.2. THE REPLACE FUNCTION 83

OM3 <- Replace(OM2, Perfect_Info, Name="OM2 with new Obs")

Replacing sub-model: Obs
OM4 <- Replace(OM3, Perfect_Imp, Name="OM2 with new Imp")

Replacing sub-model: Imp

84 CHAPTER 12. MODIFYING THE OM

Chapter 13

Operating Model Library

We are in the process of developing an online library of DLMtool Operating
Models.

This library includes the OM Report, the OM Excel workbook, and the OM R
Data file for many of the fisheries where DLMtool OMs have been built. The
idea behind the OM library is to develop a resource for DLMtool users to learn
from other applications as well as to provide OM templates which users can
borrow and modify to suit their own fishery.

The OM library is still being developed and we are continuing to add OMs that
we have constructed. If you have built a DLMtool OM and are happy to make
it public, please contact us through the website or email us directly, we would
love to include it on our website.

85

http://www.datalimitedtoolkit.org/fishery_library
http://www.datalimitedtoolkit.org/contact/

86 CHAPTER 13. OPERATING MODEL LIBRARY

Interpreting MSE Results

87

Chapter 14

Examining the MSE object

The MSE object contains all of the output from the MSE. In this chapter we
will examine the MSE object in more detail.

First we will run an MSE so that we have an MSE object to work with. We
will then briefly examine some of the contents of the MSE object. The chapters
Performance Metrics and Custom Performance Metrics contain more information
on the MSE object.

We create an OM based on the Blue Shark stock object and other built-in objects:
OM <- new('OM', Blue_shark, Generic_Fleet, Imprecise_Biased, Perfect_Imp, nsim=200)

Note that we have increased the number of simulations from the default 48 to
200:
OM@nsim

[1] 200

Let’s choose an arbitrary set of MPs:
MPs <- c("Fratio", "DCAC", "Fdem", "DD", "matlenlim")

Set up parallel processing:
setup()

Library DLMtool loaded.

And run the MSE using parallel processing and save the output to an object
called BSharkMSE:
BSharkMSE <- runMSE(OM, MPs, parallel = TRUE)

Running MSE in parallel on 10 processors

89

90 CHAPTER 14. EXAMINING THE MSE OBJECT

MSE completed

The names of the slots in an object of class MSE can be displayed using the
slotNames function:
slotNames(BSharkMSE)

[1] "Name" "nyears" "proyears" "nMPs" "MPs" "nsim" "OM" "Obs" "B_BMSY" "F_FMSY"
[11] "B" "SSB" "VB" "FM" "C" "TAC" "SSB_hist" "CB_hist" "FM_hist" "Effort"
[21] "PAA" "CAA" "CAL" "CALbins" "Misc"

As you can see, MSE objects contain all of the information from the MSE, stored
in 25 slots.

14.1 The First Six Slots

The first six slots contain information on the structure of the MSE. For example
the first slot (Name), is a combination of the names of the Stock, Fleet, and
Obs objects that were used in the MSE:
BSharkMSE@Name

[1] "Stock:Blue shark Fleet:Generic_Fleet Obs model:Imprecise-Biased Imp model:Perfect_Imp"

Other information in these first slots includes the number of historical years
(nyears), the number of projection years (proyears), the number of name of
the Management Procedures (nMPs and MPs), and the number of simulations
(nsim).

14.2 The OM Slot

The OM slot in the MSE object is a data frame that the values of the parameters
used in the Operating Model:
names(BSharkMSE@OM)

[1] "A" "AC" "ageM" "Asp" "Blow" "BMSY" "BMSY_B0"
[8] "CurrentYr" "D" "dFfinal" "DR" "Esd" "Fdisc" "FinF"
[15] "FMSY" "FMSY_M" "Frac_area_1" "hs" "K" "Ksd" "L5"
[22] "L50" "L50_95" "L95" "LenCV" "LFR" "LFS" "Linf"
[29] "Linfsd" "LR5" "M" "maxF" "maxlen" "Mexp" "MGT"
[36] "Msd" "MSY" "OFLreal" "Prob_staying" "procmu" "procsd" "qcv"
[43] "qinc" "R0" "RefY" "Rmaxlen" "Size_area_1" "SizeLimFrac" "SizeLimSD"
[50] "Spat_targ" "SRrel" "SSB0" "SSBMSY" "SSBMSY_SSB0" "t0" "TACFrac"
[57] "TACSD" "TAEFrac" "TAESD" "UMSY" "Vmaxlen"

14.3. THE OBS SLOT 91

If you use the dim function to report the dimensions of the OM data frame, you’ll
notice that there are 61 columns, corresponding to the 61 parameters in the
Operating Model, and 200 rows, each corresponding to a single simulation of
the MSE.

More information on the MSE@OM slot can be found in the help documentation:
class?MSE

14.3 The Obs Slot

The Obs slot contains another data frame, this one with 26 columns corresponding
to the values drawn from the Observation model:
names(BSharkMSE@Obs)

[1] "Abias" "Aerr" "betas" "BMSY_B0bias" "Brefbias" "CAA_ESS" "CAA_nsamp" "CAL_ESS"
[9] "CAL_nsamp" "Cbias" "Crefbias" "Csd" "Dbias" "Derr" "FMSY_Mbias" "hbias"
[17] "Irefbias" "Isd" "Kbias" "lenMbias" "LFCbias" "LFSbias" "Linfbias" "Mbias"
[25] "Recsd" "t0bias"

The Obs data frame also has 200 rows, each corresponding to a single simulation.
More information on the MSE@Obs slot can be found in the help documentation:
class?MSE

The information contained in the OM and Obs slots can be used to examine
the sensitivity of the performance of Management Procedures with respect to
different operating model and observation parameters. This is discussed in more
detail below.

14.4 The B_BMSY and F_FMSY Slots

The B_BMSY and F_FMSY are data frames containing the biomass relative to
biomass at maximum sustainable yield

(
B

BMSY

)
, and fishing mortality relative

to the rate corresponding to maximum sustainable yield
(

F
FMSY

)
for each

simulation, Management Procedure and projection year.

If we look at the class of the B_BMSY slot, we see that it is an array:
class(BSharkMSE@B_BMSY)

[1] "array"

Using the dim function we can see that it is a 3-dimensional array, with the size
corresponding to the number of simulations (nsim), the number of Management
Procedures (nMPs), and the number of projection years (proyears):

92 CHAPTER 14. EXAMINING THE MSE OBJECT

dim(BSharkMSE@B_BMSY)

[1] 200 5 50

This information can be used to calculate statistics relating to the performance
of each Management Procedure with respect to these metrics.

For example, if you wish to look at the distribution of B
BMSY

for the second
Management Procedure (DCAC), you could use the boxplot function:
boxplot(BSharkMSE@B_BMSY[,2,], xlab="Year", ylab="B/BMSY")

1 4 7 10 14 18 22 26 30 34 38 42 46 50

0
1

2
3

4

Year

B
/B

M
S

Y

This plot shows that the relative biomass for the stock generally increases through
the projection period when the DCAC method is used, with the median relative
biomass increasing from about 0.98 in the first year to 0.83 in the final year.

However, the distribution appears to have quite high variability, which suggests
that although the method works well on average, the final biomass was very low
in some simulations.

14.5 The B, FM, C and TAC Slots

The B, FM, and C slots contain the information relating to the stock biomass, the
fishing mortality rate, and the catch for each simulation, Management Procedure,
and projection year.

14.6. THE SSB_HIST, CB_HIST, AND FM_HIST SLOTS 93

Typically, the MSE model in the DLMtool does not include information on the
absolute scale of the stock biomass or recruitment, and all results usually must
be interpreted in a relativistic context.

This is particularly true for the biomass (B) and catch (C) where the absolute
values in the MSE results (other than 0!) have little meaning.

The biomass can by made relative to BMSY , as shown above. Alternatively,
biomass can be calculated with respect to the unfished biomass (B0), from
information stored in the OM slot.

The catch information is usually made relative to the highest long-term yield
(mean over last five years of projection) for each simulation obtained from a
fixed F strategy. This information (RefY) can be found in the OM slot.

Alternatively, the catch can be made relative to the catch in last historical year
(CB_hist; see below), to see how future catches are expected to change relative
to the current conditions.

The TAC slot contains the TAC recommendation for each simulation, MP, and
projection year. In cases where a TAC was not set (e.g for a size limit), the
value will be NA. The values in TAC may be different to those in the catch (C)
slot due to implementation error of the total catch limit.

14.6 The SSB_hist, CB_hist, and FM_hist Slots

The SSB_hist, CB_hist, and FM_hist slots contain information on the spawning
stock biomass, the catch biomass, and the fishing mortality from the historical
period (the nyears in the operating model).

These data frames differ from the previously discussed slots as they are 4-
dimensional arrays, with dimensions corresponding to the simulation, the age
classes, the historical year, and the spatial areas.

The apply function can be used to aggregate these data over the age-classes or
spatial areas.

14.7 The Effort Slot

The Effort slot is a 3-dimensional array containing information on the relative
fishing effort (relative to last historical year, or current conditions) for each
simulation, Management Procedure and projection year.

We can look at the distribution of fishing effort for each Management Procedure
in the final year of the projection period:

94 CHAPTER 14. EXAMINING THE MSE OBJECT

pyear <- BSharkMSE@proyears
boxplot(BSharkMSE@Effort[,, pyear], outline=FALSE,

names=BSharkMSE@MPs, ylab="Relative fishing effort")

Fratio DCAC Fdem DD matlenlim

0
2

4
6

8

R
el

at
iv

e
fis

hi
ng

 e
ffo

rt

This plot shows that the median fishing effort in the final year ranges from 0.77
to 1.57 for the first four output control methods, and is constant for the input
control method (matlenlim).

This is because the output control method adjusts the total allowable catch,
which depending on the amount of available stock, also impacts the amount of
fishing activity.

The input control methods assume that fishing effort is held at constant levels in
the future, although the catchability is able to randomly or systematically vary
between years. Furthermore, input control methods can also adjust the amount
of fishing effort in each year.

Chapter 15

Performance Metrics

A key use of the DLMtool is to evaluate the trade-offs in the performance of
different potential Management Procedures and to assist in the decision-making
process as to which Management Procedure is most likely to satisfy the various
management objectives under realistic range of uncertainty and variability in
the system.

15.1 The Need for Performance Metrics

In order to evaluate the relative effectiveness of different Management Procedures,
it is important that decision-makers have clearly-defined management objectives.
These management objectives can be incorporated into the MSE process in the
form of performance metrics, which provide the yardstick with which to compare
the relative performance of different management strategies.

Fisheries managers are confronted with the difficult task of maximizing yield
and ensuring the sustainability of the resource and the overall health of the
marine environment. The principal objectives of fisheries management could
be described as ensuring sustainable harvests and viable fishing communities,
while maintaining healthy ecosystems. However, this simplistic view overlooks
the fact that there are often conflicts in different management objectives and
that there is rarely an optimal management approach that fully satisfies all
management objectives (Punt, 2015). Walters and Martell (2004) explain that
the task of modern fisheries management is to identify the various trade-offs
among conflicting objectives and decide how to balance them in a satisfactory
way.

95

96 CHAPTER 15. PERFORMANCE METRICS

15.2 Inevitable Trade-Offs

A typical trade-off is the abundance of the target species versus the catch.
Assuming no significant system-wide natural perturbations, a fish stock may be
exploited sustainability if catches are set at low levels. However, such economic
under-utilization of the resource is often seen as undesirable. Alternatively, high
catches may produce immediate short-term benefits, but may result in long-term
degradation, or perhaps collapse, of the stock.

Additionally, there is often a trade-off between stock size and fishing effort, which
results in lower catch rates (and lower profit) for individual fishers when a large
number of fishers are active in the fishery (Walters and Martell, 2004). Other
common trade-offs include the age and size at first capture, either delaying
harvest until individuals are fewer in number (due to natural mortality) but
larger in size, or capturing a large number of small sized fish (Punt, 2015).

When multiple objectives are considered, there is usually not a single optimum
solution, and fisheries managers are faced with the difficult task of determining
the most appropriate management action that satisfies the numerous management
objectives and stakeholder interests (Punt, 2015).

15.2.1 Operational Management Objectives

A key strength of the MSE approach is that decision-makers are required to specify
clear objectives, which can be classified as either “conceptual” or “operational”
(Punt et al., 2014). Conceptual objectives are typically high-level policy goals
that may be broadly defined.

However, in order to be included in an MSE, conceptual objectives must be
translated into operational objectives (i.e., expressed as values for performance
metrics). Such operational objectives, or performance metrics, may consist of
both a reference point (e.g., biomass some fraction of equilibrium unfished level)
as well as a measure of the acceptable associated risk (e.g., less than 10% chance
that biomass declines below this reference level).

It is not unusual that some of the management objectives are in conflict. A
key benefit of the MSE approach is to highlight these trade-offs among the
different management objectives to guide the decision-making process. However,
in order for these trade-offs to be quantified, it is critically important that the
performance metrics are quantifiable and thus able to be incorporated into the
MSE framework (Punt, 2015).

15.3. COMMONLY USED PERFORMANCE METRICS 97

15.3 Commonly used Performance Metrics

Management strategy evaluation is a simulation exercise where the model can
track the specific performance with perfect information, so it is possible to state
performance objectives in specific terms that are consistent with the typical
objectives of fisheries policies, such as:

• Biomass relative to unfished biomass (B0) or biomass at maximum sus-
tainable yield (BMSY).

• Fishing mortality rate relative to fishing at maximum sustainable yield
(FMSY).

• Yield (short-term or long-term) of a particular management strategy rela-
tive to the yield if the fishery were being exploited at FMSY .

• Inter-annual variability in yield or effort (e.g., fluctuations in yield from
year to year).

Because the management strategy evaluation runs many simulations of the
fisheries performance under each management strategy being tested, the perfor-
mance can be stated probabilistically, such as the specific probability of biomass
being above or below a specific biomass threshold or target.

15.3.1 Fishing Mortality

For example, the management strategies can be ranked by the likelihood of
overfishing to occur, where the probability of overfishing is measured by the
proportion of simulation runs where the fishing mortality rate (F) under a
specific management strategy is higher than the F that is expected to produce
the maximum sustainable yield.
Management strategies that have a lower probability of overfishing occurring
are typically preferable to those that frequently cause excessive fishing mortality
rates. If there are 1,000 simulation runs for each management strategy over a
50-year projection period, then the probability of overfishing could be based on
the proportion where F is greater than (or less than) FMSY over all years or
any subset of years (e.g., probability of overfishing in years 41-50 of the 50-year
projection period).

15.3.2 Stock Biomass

Another common performance metric is the probability that the stock biomass
is above or below some biological reference point. For example, a minimum
performance limit may be half the biomass at maximum sustainable yield (0.5
BMSY), and the performance of the management strategies can be ranked by
the probability of the stock remaining above this level.

98 CHAPTER 15. PERFORMANCE METRICS

Management strategies that fail to maintain biomass above this limit with a
high priority may be considered too risky and therefore excluded from further
examination.

15.3.3 Additional Performance Metrics

There may be other performance metrics that are of interest to fishery managers
and stakeholders. Stakeholder participation is critical when developing perfor-
mance metrics to evaluate different biological scenarios or management strategies
in a MSE. Furthermore, it is important that the performance metrics, together
with any acceptable risk thresholds are identified and agreed upon before the
MSE is conducted.

15.4 Performance Metrics Methods

DLMtool includes a set of functions, of class PM, for calculating Performance
Metrics. The available PM functions (referred to as PMs) can be found using the
avail function:
avail("PM")

[1] "AAVE" "AAVY" "LTY" "P10" "P100" "P50" "PNOF" "STY" "Yield" "MeanB" "MeanF"

The PMs are used for summarizing the performance of the management proce-
dures and plotting the results in trade-off plots.

Here we briefly describe the built-in Performance Metrics functions and demon-
strate their use. Advanced DLMtool users can develop their own PM methods,
see the Custom Performance Metrics chapter for details.

Functions of class PM are used on an object of class MSE (i.e the object returned
by runMSE), and return an object of class PMobj. Most of the time the PM
functions are used internally in the summary or plotting functions, and it will
not be neccessary to acess the PMobj directly.

To demonstrate the PM functions we first run a quick example MSE:
MSE <- runMSE()

15.4.1 Overview of the PM Functions

We will use the P50 function to demonstrate the PM methods. Help documentation
on the PM methods can be accessed in the usual way: ?P50.

15.4. PERFORMANCE METRICS METHODS 99

The P50 PM method calculates the probability that spawning biomass is
above half of the spawning biomass that results in maximum sustainable yield
(SB > 0.5SBMSY).

Applying the P50 function to our MSE object results in the following output:
P50(MSE)

Spawning Biomass relative to SBMSY
Prob. SB > 0.5 SBMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 0.88 1 1 1 1
3 0.04 0.06 0.98 0.14 0.98 0.68
4 1 0.9 0.98 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 0.68 1 1 1 1
8 0.38 0.36 1 1 1 1
9 0.46 0.54 1 0.4 0.98 0.6
10 1 1 1 1 1 1
11
12
13
48 0.42 0.42 0.96 1 1 1
##
Mean
[1] 0.80 0.76 0.99 0.87 0.99 0.92

We can see that the PM function calculated, for the 6 MPs in the MSE object, the
probability SB > 0.5SBMSY for all 50 projection years.

The PM function prints out a summary table of the performance metrics statistics
for the first 10 simulations and the last simulation (48 in this case) for each MP.
The final line shows the overall probability of the performance metric, i.e the
average performance across all simulations.

We will look into this output in a little more detail.

We can see that the first MP is AvC and the performance statistics for the first
and second simulations are 1 and 1. How have these values been calculated and
what do they mean?

Let’s first plot the spawning biomass relative to BMSY for the first two simula-
tions of the AvC MP:
par(mfrow=c(1,2))
plot(1:MSE@proyears, MSE@B_BMSY[1,1,], type='l',

xlab="Years", ylab="B/BMSY", lwd=2, bty="l", ylim=c(0,2),
main="MP = 'AvC'; Sim = 1")

100 CHAPTER 15. PERFORMANCE METRICS

abline(h=0.5, lty=3)

plot(1:MSE@proyears, MSE@B_BMSY[2,1,], type='l',
xlab="Years", ylab='', lwd=2, bty="l", ylim=c(0,2),
main="MP = 'AvC'; Sim = 2")

abline(h=0.5, lty=3)

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

MP = 'AvC'; Sim = 1

Years

B
/B

M
S

Y

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

MP = 'AvC'; Sim = 2

Years

Now we will calculate fraction of years where spawning biomass is above 0.5
SBMSY for the first and second simulations:
mean(MSE@B_BMSY[1,1,] > 0.5) # first simulation

[1] 1
mean(MSE@B_BMSY[2,1,] > 0.5) # second simulation

[1] 1
identical to:
sum(MSE@B_BMSY[1,1,] > 0.5)/MSE@proyears
sum(MSE@B_BMSY[2,1,] > 0.5)/MSE@proyears

Notice how the performance statistics for each simulation correspond with the
plot shown above?

The overall performance is then calculated by the probability over all simulations,
i.e for the first MP AvC:

15.4. PERFORMANCE METRICS METHODS 101

mean(MSE@B_BMSY[,1,]>0.5)

[1] 0.795

And for 6 MPs:
round(apply(MSE@B_BMSY >0.5, 2, mean),2)

[1] 0.80 0.76 0.99 0.87 0.99 0.92

which, reassuringly, is the same as the output of the P50 function.

15.4.2 Customizing the PM Functions

The PM functions allow for very quick calculation of performance metrics. For
example, suppose that instead of calculating performance over all projection
years, we are only interested in the long-term performance, say over the last 10
years. This can be easily achieved using the Yrs argument in the PM function:
P50(MSE, Yrs=c(41,50))

Spawning Biomass relative to SBMSY
Prob. SB > 0.5 SBMSY (Years 41 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 0.4 1 1 1 1
3 0 0 1 0 1 0.5
4 1 0.5 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 0 1 1 1 1
8 0 0 1 1 1 1
9 0 0 1 0 1 0.2
10 1 1 1 1 1 1
11
12
13
48 0 0 1 1 1 1
##
Mean
[1] 0.72 0.50 1.00 0.83 0.99 0.87

Or the first 10 years:
P50(MSE, Yrs=c(1,10))

Spawning Biomass relative to SBMSY
Prob. SB > 0.5 SBMSY (Years 1 - 10)

102 CHAPTER 15. PERFORMANCE METRICS

AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0.2 0.3 0.9 0.3 0.9 0.5
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 0.9 1
10 1 1 1 1 1 1
11
12
13
48 1 1 1 1 1 1
##
Mean
[1] 0.93 0.95 0.99 0.92 0.99 0.95

The other biomass Performance Metric functions work in the same way:
P10(MSE) # probability SB > 0.1SB_MSY for all years

Spawning Biomass relative to SBMSY
Prob. SB > 0.1 SBMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0.28 0.38 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 0.84 1 1 1 1
8 0.94 0.94 1 1 1 1
9 0.64 0.72 1 1 1 1
10 1 1 1 1 1 1
11
12
13
48 0.56 0.58 1 1 1 1
##
Mean
[1] 0.87 0.88 1.00 0.99 1.00 1.00
P100(MSE) # probability SB > SB_MSY for all years

Spawning Biomass relative to SBMSY

15.4. PERFORMANCE METRICS METHODS 103

Prob. SB > SBMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 0.98 0.54 1 1 1
2 1 0.8 0.72 1 1 1
3 0 0 0.56 0 0.76 0
4 1 0.82 0.48 0.86 0.98 0.86
5 0.84 0.84 0.8 0.88 0.92 0.88
6 1 1 0.76 1 1 1
7 0.96 0.56 0.46 1 0.96 1
8 0.22 0.24 0.82 0.98 1 1
9 0.02 0.34 0.48 0.02 0.84 0.02
10 0.96 0.92 0.66 0.16 0.76 0.36
11
12
13
48 0.08 0.28 0.48 0.86 0.96 0.88
##
Mean
[1] 0.70 0.65 0.54 0.68 0.93 0.73

Long-term, short-term and overall average yield are calculated using LTY, STY
and Yield respectively:
LTY(MSE)

Average Yield relative to Reference Yield (Years 41-50)
Prob. Yield > 0.5 Ref. Yield (Years 41-50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 0.4 1
2 1 1 1 0.6 0 0.5
3 0 0 1 0.8 0.7 0.8
4 1 1 1 1 0.2 1
5 1 1 1 1 1 1
6 0 1 1 1 0.9 1
7 1 0.1 1 0.9 0 0.9
8 0.1 0.1 1 1 1 1
9 0 0 1 1 0.2 1
10 1 1 1 1 1 1
11
12
13
48 0 0 1 0.8 0.4 0.8
##
Mean
[1] 0.62 0.65 1.00 0.79 0.60 0.80

104 CHAPTER 15. PERFORMANCE METRICS

STY(MSE)

Average Yield relative to Reference Yield (Years 1-10)
Prob. Yield > 0.5 Ref. Yield (Years 1-10)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 0.7 0 0.7
2 1 1 1 1 0 1
3 1 1 1 1 0 1
4 1 1 1 1 0 1
5 1 1 1 0.8 0.7 0.8
6 0 0 1 1 0.6 1
7 1 1 1 1 0 1
8 1 1 1 1 0.7 1
9 1 1 1 1 0 1
10 1 1 1 1 1 1
11
12
13
48 1 1 1 1 0.6 1
##
Mean
[1] 0.86 0.82 0.98 0.87 0.44 0.87
Yield(MSE)

Yield relative to Reference Yield (Years 1-50)
Mean Relative Yield (Years 1-50)
AvC DCAC FMSYref curE matlenlim MRreal
1 0.65 0.84 1.03 0.75 0.31 0.74
2 0.79 0.98 1.16 0.67 0.31 0.65
3 0.39 0.47 1.08 0.93 0.51 0.92
4 0.75 1.01 1.08 1.02 0.4 0.98
5 0.94 1 1.23 1.13 0.95 1.1
6 0.48 0.64 0.9 0.73 0.6 0.71
7 0.74 0.7 0.83 0.68 0.12 0.66
8 0.78 0.76 1.05 1 0.82 0.96
9 0.69 0.74 0.91 0.83 0.39 0.83
10 1 1 1.28 1.28 1.42 1.24
11
12
13
48 0.68 0.7 1 0.84 0.56 0.81
##
Mean
[1] 0.67 0.77 1.03 0.83 0.62 0.82

The PNOF PM function calculates the probability of not overfishing:

15.4. PERFORMANCE METRICS METHODS 105

PNOF(MSE)

Probability of not overfishing (F<FMSY)
Prob. F < FMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 0.98 0.58 1 1 1
2 1 0.8 0.6 1 1 1
3 0 0 0.74 0.04 0.98 0.04
4 1 0.76 0.6 0.92 1 0.92
5 0.88 0.86 0.7 0.94 1 0.94
6 1 1 0.74 1 1 1
7 1 0.5 0.8 1 1 1
8 0.14 0.2 0.64 0.82 1 0.82
9 0.02 0.34 0.82 0.04 0.98 0.04
10 1 0.9 0.66 0.2 0.72 0.2
11
12
13
48 0.02 0.26 0.72 0.92 0.98 0.92
##
Mean
[1] 0.71 0.64 0.68 0.71 0.96 0.71

Finally, the average annual variability in yield (AAVY) can be calculated with
the AAVY function:
AAVY(MSE)

Average Annual Variability in Yield (Years 1-50)
Prob. AAVY < 20% (Years 1-50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 0 0 0
2 1 1 1 1 1 1
3 1 1 1 0 0 0
4 1 1 1 1 1 1
5 1 1 1 0 0 0
6 1 1 1 0 0 0
7 1 1 1 0 0 0
8 1 1 1 0 0 0
9 1 1 1 0 0 0
10 1 1 1 0 0 0
11
12
13
48 1 1 1 0 0 0
##
Mean

106 CHAPTER 15. PERFORMANCE METRICS

[1] 1.00 1.00 1.00 0.21 0.23 0.23

By default the AAVY PM function calculates the probability that AAVY is less
than 20%. This reference level can easily be modified using the Ref argument:
AAVY(MSE, Ref=0.15) # prob. AAVY < 15%

Average Annual Variability in Yield (Years 1-50)
Prob. AAVY < 15% (Years 1-50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 0 0 0
2 1 1 1 0 0 0
3 1 1 1 0 0 0
4 1 1 1 0 0 0
5 1 1 1 0 0 0
6 1 1 1 0 0 0
7 1 1 1 0 0 0
8 1 1 1 0 0 0
9 1 1 1 0 0 0
10 1 1 1 0 0 0
11
12
13
48 1 1 1 0 0 0
##
Mean
[1] 0.94 1.00 1.00 0.02 0.02 0.02
AAVY(MSE, Ref=0.30) # prob. AAVY < 30%

Average Annual Variability in Yield (Years 1-50)
Prob. AAVY < 30% (Years 1-50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 0 1 1
4 1 1 1 1 1 1
5 1 1 1 0 0 0
6 1 1 1 1 1 1
7 1 1 1 1 1 1
8 1 1 1 0 0 0
9 1 1 1 1 1 1
10 1 1 1 1 1 1
11
12
13
48 1 1 1 1 1 1

15.4. PERFORMANCE METRICS METHODS 107

##
Mean
[1] 1.00 1.00 1.00 0.79 0.81 0.81

The other PM functions also have the Ref argument which can be used in the
same way. For example, you may notice that the P50 and P100 functions are
identical except for the value of the Ref argument:
args(P50)

function (MSEobj = NULL, Ref = 0.5, Yrs = NULL)
NULL
args(P100)

function (MSEobj = NULL, Ref = 1, Yrs = NULL)
NULL

It follows then that it is very simple to calculate a custom performance metric
based on the built-in PM functions. For example, suppose we wanted to calculate
the probability that spawning biomass was above 5% of BMSY. This can be
achieved by using any of the biomass-based PM functions and modifying the Ref
argument:
P50(MSE, Ref=0.05)

Spawning Biomass relative to SBMSY
Prob. SB > 0.05 SBMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0.46 0.62 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 0.96 1 1 1 1
8 1 1 1 1 1 1
9 0.76 0.82 1 1 1 1
10 1 1 1 1 1 1
11
12
13
48 0.76 0.78 1 1 1 1
##
Mean
[1] 0.90 0.92 1.00 0.99 1.00 1.00
P100(MSE, Ref=0.05)

Spawning Biomass relative to SBMSY

108 CHAPTER 15. PERFORMANCE METRICS

Prob. SB > 0.05 SBMSY (Years 1 - 50)
AvC DCAC FMSYref curE matlenlim MRreal
1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 0.46 0.62 1 1 1 1
4 1 1 1 1 1 1
5 1 1 1 1 1 1
6 1 1 1 1 1 1
7 1 0.96 1 1 1 1
8 1 1 1 1 1 1
9 0.76 0.82 1 1 1 1
10 1 1 1 1 1 1
11
12
13
48 0.76 0.78 1 1 1 1
##
Mean
[1] 0.90 0.92 1.00 0.99 1.00 1.00

More information on customizing PM functions can be found in the Custom
Performance Metrics chapter.

In the next section we will demonstrate using PM functions in summarizing and
plotting functions.

15.5 Summarizing Management Procedure Per-
formance

The Examining the MSE Results chapter introduced the summary function for
MSE objects and some of the plotting functions for visualizing the results. Here
we demonstrate how the PM functions can be used in the summary function and
the trade-off plots:

15.5.1 summary Table

The summary function provides information on the performance of the Manage-
ment Procedures with respect to the performance metrics. By default, summary
includes the PNOF, P50, AAVY and LTY performance metrics:
summary(MSE)

Calculating Performance Metrics

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE109

Performance.Metrics
1 Probability of not overfishing (F<FMSY) Prob. F < FMSY (Years 1 - 50)
2 Spawning Biomass relative to SBMSY Prob. SB > 0.5 SBMSY (Years 1 - 50)
3 Average Annual Variability in Yield (Years 1-50) Prob. AAVY < 20% (Years 1-50)
4 Average Yield relative to Reference Yield (Years 41-50) Prob. Yield > 0.5 Ref. Yield (Years 41-50)
##
##
Performance Statistics:
MP PNOF P50 AAVY LTY
1 AvC 0.71 0.80 1.00 0.62
2 DCAC 0.64 0.76 1.00 0.65
3 FMSYref 0.68 0.99 1.00 1.00
4 curE 0.71 0.87 0.21 0.79
5 matlenlim 0.96 0.99 0.23 0.60
6 MRreal 0.71 0.92 0.23 0.80

It is straightforward to include other PM functions by adding the names of the
PM functions, for example:
summary(MSE, 'P100', 'Yield')

Calculating Performance Metrics

Performance.Metrics
1 Spawning Biomass relative to SBMSY Prob. SB > SBMSY (Years 1 - 50)
2 Yield relative to Reference Yield (Years 1-50) Mean Relative Yield (Years 1-50)
##
##
Performance Statistics:
MP P100 Yield
1 AvC 0.70 0.67
2 DCAC 0.65 0.77
3 FMSYref 0.54 1.00
4 curE 0.68 0.83
5 matlenlim 0.93 0.62
6 MRreal 0.73 0.82

or all available PM functions:
summary(MSE, avail('PM'))

Calculating Performance Metrics

Performance.Metrics
1 Average Annual Variability in Effort (Years 1-50) Prob. AAVE < 20% (Years 1-50)
2 Average Annual Variability in Yield (Years 1-50) Prob. AAVY < 20% (Years 1-50)
3 Average Yield relative to Reference Yield (Years 41-50) Prob. Yield > 0.5 Ref. Yield (Years 41-50)
4 Spawning Biomass relative to SBMSY Prob. SB > 0.1 SBMSY (Years 1 - 50)
5 Spawning Biomass relative to SBMSY Prob. SB > SBMSY (Years 1 - 50)

110 CHAPTER 15. PERFORMANCE METRICS

6 Spawning Biomass relative to SBMSY Prob. SB > 0.5 SBMSY (Years 1 - 50)
7 Probability of not overfishing (F<FMSY) Prob. F < FMSY (Years 1 - 50)
8 Average Yield relative to Reference Yield (Years 1-10) Prob. Yield > 0.5 Ref. Yield (Years 1-10)
9 Yield relative to Reference Yield (Years 1-50) Mean Relative Yield (Years 1-50)
10 Spawning Biomass relative to SBMSY Mean SB/SBMSY (Years 46 - 50)
11 Fishing Mortality relative to FMSY Mean F/FMSY (Years 46 - 50)
##
##
Performance Statistics:
MP AAVE AAVY LTY P10 P100 P50 PNOF STY Yield MeanB MeanF
1 AvC 0.25 1.00 0.62 0.87 0.70 0.80 0.71 0.86 0.67 1.70 1.10
2 DCAC 0.27 1.00 0.65 0.88 0.65 0.76 0.64 0.82 0.77 0.78 2.00
3 FMSYref 0.12 1.00 1.00 1.00 0.54 0.99 0.68 0.98 1.00 1.00 0.98
4 curE 1.00 0.21 0.79 0.99 0.68 0.87 0.71 0.87 0.83 1.60 0.90
5 matlenlim 1.00 0.23 0.60 1.00 0.93 0.99 0.96 0.44 0.62 2.40 0.22
6 MRreal 1.00 0.23 0.80 1.00 0.73 0.92 0.71 0.87 0.82 1.70 0.89

The summary function returns a data frame which can be useful for referring to
the PM results elsewhere in the analysis. For example,
Results <- summary(MSE, avail('PM'), silent=TRUE) # silent=TRUE to hide print-out to console
Results$Yield # access the PM results

[1] 0.67 0.77 1.00 0.83 0.62 0.82

15.5.2 Trade-Off Plots

The TradePlot function takes an object of class MSE and the names of PM
functions (at least 2) to produce a trade-off plot. For example:
TradePlot(MSE) # default plot

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE111

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. Yield > 0.5 Ref. Yield (Years 1−10)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC DCAC
FMSYref

curE
matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 A

A
V

Y
 <

 2
0%

 (
Ye

ar
s

1−
50

)

MP Type

Input
Output
Reference

MP STY LTY P10 AAVY Satisificed
1 AvC 0.86 0.62 0.87 1.00 TRUE
2 DCAC 0.82 0.65 0.88 1.00 TRUE
3 FMSYref 0.98 1.00 1.00 1.00 TRUE
4 curE 0.87 0.79 0.99 0.21 FALSE
5 matlenlim 0.44 0.60 1.00 0.23 FALSE
6 MRreal 0.87 0.80 1.00 0.23 FALSE

The order of the PM function names determines plotting on the x and y axes.
For example:
TradePlot(MSE, 'P50' ,'LTY') # x = P50, y = LTY

112 CHAPTER 15. PERFORMANCE METRICS

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Output
Reference

MP P50 LTY Satisificed
1 AvC 0.80 0.62 TRUE
2 DCAC 0.76 0.65 TRUE
3 FMSYref 0.99 1.00 TRUE
4 curE 0.87 0.79 TRUE
5 matlenlim 0.99 0.60 TRUE
6 MRreal 0.92 0.80 TRUE
TradePlot(MSE, 'LTY' ,'P50') # x = LTY, y = P50

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE113

AvC

DCAC

FMSYref

curE

matlenlim MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. Yield > 0.5 Ref. Yield (Years 41−50)

P
ro

b.
 S

B
 >

 0
.5

 S
B

M
S

Y
 (

Ye
ar

s
1

−
 5

0)

MP Type

Input
Output
Reference

MP LTY P50 Satisificed
1 AvC 0.62 0.80 TRUE
2 DCAC 0.65 0.76 TRUE
3 FMSYref 1.00 0.99 TRUE
4 curE 0.79 0.87 TRUE
5 matlenlim 0.60 0.99 TRUE
6 MRreal 0.80 0.92 TRUE

The PMs are recycled if an odd number are provided:
TradePlot(MSE, 'P50' ,'LTY', 'STY')

Odd number of PMs. Recycling first PM

114 CHAPTER 15. PERFORMANCE METRICS

AvC
DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. Yield > 0.5 Ref. Yield (Years 1−10)

P
ro

b.
 S

B
 >

 0
.5

 S
B

M
S

Y
 (

Ye
ar

s
1

−
 5

0)

MP Type

Input
Output
Reference

MP P50 LTY STY Satisificed
1 AvC 0.80 0.62 0.86 TRUE
2 DCAC 0.76 0.65 0.82 TRUE
3 FMSYref 0.99 1.00 0.98 TRUE
4 curE 0.87 0.79 0.87 TRUE
5 matlenlim 0.99 0.60 0.44 FALSE
6 MRreal 0.92 0.80 0.87 TRUE

The Lims argument is used to set the vertical and horizontal acceptable risk
thresholds and are interpreted in the same order as the names of the PM functions.
For example:
TradePlot(MSE, 'P50' ,'LTY', Lims=c(0.8, 0)) # 80% minimum acceptable risk for P50, no minimum for LTY

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE115

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Output
Reference

MP P50 LTY Satisificed
1 AvC 0.80 0.62 FALSE
2 DCAC 0.76 0.65 FALSE
3 FMSYref 0.99 1.00 TRUE
4 curE 0.87 0.79 TRUE
5 matlenlim 0.99 0.60 TRUE
6 MRreal 0.92 0.80 TRUE
TradePlot(MSE, 'P50' ,'STY', 'P100', 'LTY', Lims=c(0.8, 0, 0.5, 0)) # 80% minimum acceptable risk for P50, 50% for P100, no minimum for STY and LTY

116 CHAPTER 15. PERFORMANCE METRICS

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

1−
10

)

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Output
Reference

MP P50 STY P100 LTY Satisificed
1 AvC 0.80 0.86 0.70 0.62 FALSE
2 DCAC 0.76 0.82 0.65 0.65 FALSE
3 FMSYref 0.99 0.98 0.54 1.00 TRUE
4 curE 0.87 0.87 0.68 0.79 TRUE
5 matlenlim 0.99 0.44 0.93 0.60 TRUE
6 MRreal 0.92 0.87 0.73 0.80 TRUE

The TradePlot function returns a data frame with the results of the performance
metrics, and a column indicating if an MP has met minimum performance
criteria for all performance metrics. In the previous example, 4 MPs (FMSYref,
curE, matlenlim, MRreal) met the minimum performance criteria for all four
performance metrics.

The TradePlot function can be used to make a variety of custom trade-off plots.
For example, the Tplot, Tplot2, and Tplot3 functions all use this function to
produce different trade-off plots:
Tplot

function(MSEobj, Lims=c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5), ...) {
if (class(Lims)!="numeric") stop("Second argument must be numeric")
TradePlot(MSEobj, Lims=Lims, PMlist=list("PNOF", "LTY", "P100", "LTY", "P50", "LTY", "P10", "LTY"), ...)
}
<bytecode: 0x000001d48366c178>
<environment: namespace:DLMtool>

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE117

Tplot(MSE)

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. F < FMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvCDCAC

FMSYref

curE matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC
DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

AvC

DCAC

FMSYref
curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Output
Reference

MP PNOF LTY P100 P50 P10 Satisificed
1 AvC 0.71 0.62 0.70 0.80 0.87 TRUE
2 DCAC 0.64 0.65 0.65 0.76 0.88 TRUE
3 FMSYref 0.68 1.00 0.54 0.99 1.00 TRUE
4 curE 0.71 0.79 0.68 0.87 0.99 TRUE
5 matlenlim 0.96 0.60 0.93 0.99 1.00 TRUE
6 MRreal 0.71 0.80 0.73 0.92 1.00 TRUE

Similarly, we can easily reproduce NOAA_plot using the Tradeplot function:
NOAA_plot(MSE)

PNOF B50 LTY VY
AvC 71.3 79.5 61.2 93.8
DCAC 63.7 75.8 61.7 100.0
FMSYref 68.2 99.3 100.0 100.0
curE 70.5 87.4 75.8 2.1
matlenlim 96.0 99.3 61.2 2.1
MRreal 70.5 91.9 80.0 2.1
TradePlot(MSE, Lims=c(0.5, 0, 0.8, 0.5),

PMlist=list("PNOF", "LTY", "P50", "AAVY"), Refs=list(AAVY=0.15))

118 CHAPTER 15. PERFORMANCE METRICS

0 40 80 120

0
20

60
10

0

Prob. of not overfishing (%)

Lo
ng

−
te

rm
 y

ie
ld

AvCDCAC

FMSYref

curE

matlenlim

MRreal

0 40 80 120

0
20

60
10

0

Prob. biomass above half BMSY (%)

P
ro

b.
 A

A
V

Y
 le

ss
 th

an
 1

5%

AvC
DCACFMSYref

curEmatlenlimMRreal

AvC

DCAC

FMSYref

curE

matlenlim

MRreal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. F < FMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
) AvC

DCAC
FMSYref

curE
matlenlim

MRreal0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 A

A
V

Y
 <

 1
5%

 (
Ye

ar
s

1−
50

)

MP Type

Input
Output
Reference

MP PNOF LTY P50 AAVY Satisificed
1 AvC 0.71 0.62 0.80 0.940 FALSE
2 DCAC 0.64 0.65 0.76 1.000 FALSE
3 FMSYref 0.68 1.00 0.99 1.000 TRUE
4 curE 0.71 0.79 0.87 0.021 FALSE

15.5. SUMMARIZING MANAGEMENT PROCEDURE PERFORMANCE119

5 matlenlim 0.96 0.60 0.99 0.021 FALSE
6 MRreal 0.71 0.80 0.92 0.021 FALSE

See the Plotting MSE Results section for examples on DLMtool plotting functions
for the MSE object.

Advanced users may wish to develop their own plotting and summary functions.
See the Custom Performance Metrics section for more details on this.

120 CHAPTER 15. PERFORMANCE METRICS

Chapter 16

Value of Information

The Value of Information (VOI) functions have been designed to explore the
sensitivity of the performance of the Management Procedures to variability in
the observation processes and operating model parameters.

There are several VOI functions in DLMtool.

The VOI function generates two plots, one corresponding to the operating model
parameters, and the other to the observation model parameters, showing the
gradient in long-term yield with respect to the individual parameters:
VOI(MSE)

121

122 CHAPTER 16. VALUE OF INFORMATION

x

y

0.02 0.04 0.06 0.08

18.32

Msd

A
vC

0
50

10
0

x

y

2000 4000 6000 8000

18.18

SSBMSY

x

y

0 0.2 0.4 0.6 0.8 1

16.99

Vmaxlen

x

y

0.36 0.4 0.42

16.96

M

x

y

20 25 30 35

16.52

L5

x

y

0.35 0.4 0.45

16.52

BMSY_B0

x

y

20 25 30 35

26.51

L5

D
C

A
C

0
50

10
0

x

y

0 0.2 0.4 0.6 0.8 1

23.11

Vmaxlen

x

y

0.08 0.09 0.1 0.11 0.12

22.81

LenCV

x

y

0.35 0.4 0.45

22.3

BMSY_B0

x

y

0.7 0.75 0.8

22.26

hs

x

y

65 70 75 80 85 90 95

21.62

LFS

x

y

0.7 0.75 0.8

3.82

hs

F
M

S
Y

re
f

0
50

10
0

x

y

−0.035 −0.025 −0.015 −0.005

3.61

procmu

x

y

5000 15000 25000

3.41

SSB0

x

y

0.2 0.4 0.6 0.8 1 1.2

3.37

FinF

x

y

65 70 75 80 85 90 95

3.24

LFS

x

y

0.36 0.4 0.42

3.18

M

x

y

0.16 0.18 0.2 0.22

17.41

K

cu
rE

0
50

10
0

x

y

0.2 0.4 0.6 0.8

16.95

AC

x

y

5000 15000 25000

15.02

SSB0

x

y

5 5.5 6 6.5 7

14.51

MGT

x

y

−2 −1 0 1 2

13.85

qinc

x

y

0.1 0.2 0.3 0.4 0.5

13.56

D

x

y

−2 −1 0 1 2

22.76

qinc

m
at

le
nl

im
0

50
10

0

x

y

2000 4000 6000 8000

20.56

SSBMSY

x

y

115 120 125 130

20.27

maxlen

x

y

0.1 0.2 0.3 0.4 0.5

19.31

D

x

y

0.16 0.18 0.2 0.22

19.1

K

x

y

65 70 75 80 85 90 95

17.46

LFS

y

0.16 0.18 0.2 0.22

15.83

K

M
R

re
al

0
50

10
0

y

0.2 0.4 0.6 0.8

15.05

AC

y

−2 −1 0 1 2

14.06

qinc

y

0.1 0.2 0.3 0.4 0.5

13.23

D

y

5 5.5 6 6.5 7

12.17

MGT

y

5000 15000 25000

11.79

SSB0

Lo
ng

−
te

rm
 y

ie
ld

 r
el

at
iv

e
to

 M
S

Y
 (

%
)

Operating model parameters: MSE@OM

123

x

y

0.8 0.9 1 1.1 1.2

22.01

Cbias

A
vC

0
50

10
0

15
0

x

y

0.1 0.15 0.2 0.25 0.3

11.98

Csd

x

y

0.8 0.9 1 1.1 1.2

30.88

Cbias

D
C

A
C

0
50

10
0

15
0

x

y

0.8 0.9 1 1.1 1.2 1.3

18.81

Mbias

x

y

0.05 0.07 0.09 0.1

16.74

Derr

x

y

0.1 0.15 0.2 0.25 0.3

15.09

Csd

x

y

0.5 1 1.5 2 2.5 3

12.02

Dbias

x

y

0.6 0.8 1 1.2

9.62

FMSY_Mbias

F
M

S
Y

re
f

cu
rE

x

y

0.8 0.9 1 1.1 1.2

19.88

lenMbias

m
at

le
nl

im
0

50
10

0
15

0

M
R

re
al

Lo
ng

−
te

rm
 y

ie
ld

 r
el

at
iv

e
to

 M
S

Y
 (

%
)

Observation model parameters: MSE@Obs

[[1]]
MP 1 2 3 4 5 6
1 AvC Msd SSBMSY Vmaxlen M L5 BMSY_B0
2 18.32 18.18 16.99 16.96 16.52 16.52
3 DCAC L5 Vmaxlen LenCV BMSY_B0 hs LFS
4 26.51 23.11 22.81 22.3 22.26 21.62
5 FMSYref hs procmu SSB0 FinF LFS M
6 3.82 3.61 3.41 3.37 3.24 3.18
7 curE K AC SSB0 MGT qinc D
8 17.41 16.95 15.02 14.51 13.85 13.56
9 matlenlim qinc SSBMSY maxlen D K LFS
10 22.76 20.56 20.27 19.31 19.1 17.46
11 MRreal K AC qinc D MGT SSB0
12 15.83 15.05 14.06 13.23 12.17 11.79
##
[[2]]

124 CHAPTER 16. VALUE OF INFORMATION

MP 1 2 3 4 5 6
1 AvC Cbias Csd
2 22.01 11.98
3 DCAC Cbias Mbias Derr Csd Dbias FMSY_Mbias
4 30.88 18.81 16.74 15.09 12.02 9.62
5 FMSYref <NA>
6 <NA>
7 curE <NA>
8 <NA>
9 matlenlim lenMbias
10 19.88
11 MRreal <NA>
12 <NA>

The VOIplot function shows something similar, but has an argument to specify
either the Observation or Operating Model parameters:
Observation Parameters
VOIplot(MSE, nMP=5)

125

0

50

100

150

A
vC

0.85 0.95 1.05 1.15

Cbias
0.15 0.25

Csd

0

50

100

150

D
C

A
C

0.85 0.95 1.05 1.15

Cbias
0.06 0.08

Derr
0.8 1.0 1.2

FMSY_Mbias
0.8 0.9 1.0 1.1

Mbias
0.15 0.25

Csd

0

50

100

150

m
at

le
nl

im

0.85 0.95 1.05 1.15

lenMbias

Observation Parameters
Lo

ng
−

te
rm

 y
ie

ld
 r

el
at

iv
e

to
 M

S
Y

 (
%

)

OM Parameters
VOIplot(MSE, Par="OM", nMP=5)

126 CHAPTER 16. VALUE OF INFORMATION

0

50

100

150

A
vC

0.02 0.06

Msd
0.16 0.20 0.24 0.28

procsd
0.36 0.40 0.44

M
122 126 130 134

Linf
92 96 100

L95

0

50

100

150

D
C

A
C

0.16 0.20 0.24 0.28

procsd
0.70 0.80

hs
3.0 4.0 5.0

ageM
20 25 30

L5
0.82 0.86

Prob_staying

0

50

100

150

F
M

S
Y

re
f

122 126 130 134

Linf
0.2 0.6 1.0

Vmaxlen
0.70 0.80

hs
0.15 0.25 0.35

Esd
0.36 0.40 0.44

M

0

50

100

150

cu
rE

−1.5 0.0 1.0

qinc
−0.030 −0.015

procmu
20 25 30

L5
3.0 4.0 5.0

ageM
−0.010 0.005 0.020

dFfinal

0

50

100

150

m
at

le
nl

im

−1.5 0.0 1.0

qinc
3.0 4.0 5.0

ageM
65 75 85

LFS
122 126 130 134

Linf
0.09 0.11

LenCV

Operating Model Parameters

Lo
ng

−
te

rm
 y

ie
ld

 r
el

at
iv

e
to

 M
S

Y
 (

%
)

By default, the VOIplot function only shows the four Management Procedures
with the greatest sensitivity. Here we’ve made it show all five methods using the
nMP argument.

In this example we can see that the Fratio method is particularly sensitive to
bias in the current estimate of abundance, and over-estimates of the current
abundance result in very low long-term yield (probably do to collapse of the
stock). The DCAC method appears most sensitive to bias in the estimated
catch.

We can also use the VOIplot function to look at the sensitivity with respect to
the final biomass by specifying the YVar argument:
VOIplot(MSE, Par="OM", nMP=5, YVar="B")

127

0

1

2

3

4

A
vC

0.1 0.3 0.5

D
0.16 0.20 0.24 0.28

procsd
−1.5 0.0 1.0

qinc
0.09 0.11

LenCV
0.82 0.86

Prob_staying

0

1

2

3

4

D
C

A
C

−1.5 0.0 1.0

qinc
0.1 0.3 0.5

D
3.0 4.0 5.0

ageM
0.16 0.20 0.24 0.28

procsd
0.82 0.86

Prob_staying

0

1

2

3

4

F
M

S
Y

re
f

0.005 0.015

Ksd
0.02 0.06

Msd
10.0 11.0 12.0

L50_95
0.1 0.3 0.5

D
0.09 0.11

LenCV

0

1

2

3

4

cu
rE

−1.5 0.0 1.0

qinc
0.1 0.3 0.5

D
0.09 0.11

LenCV
0.15 0.25 0.35

Esd
0.02 0.06

Msd

0

1

2

3

4

m
at

le
nl

im

0.02 0.06

Msd
−1.5 0.0 1.0

qinc
0.1 0.3 0.5

D
0.09 0.11

LenCV
0.15 0.25 0.35

Esd

Operating Model Parameters
B

/B
M

S
Y

 in
 la

st
 5

 y
ea

rs

This result shows, perhaps unsurprisingly, that the final biomass is often strongly
sensitive to the initial depletion, particularly for the DCAC and matlenlim
methods.

The VOIplot2 function is an updated version of VOIplot that uses the PM
functions and plots the Value of Information for a single MP:
VOIplot2(MSE)

128 CHAPTER 16. VALUE OF INFORMATION

Catch error Catch bias

0.10 0.15 0.20 0.25 0.300.8 0.9 1.0 1.1 1.2

0.00

0.25

0.50

0.75

1.00

Parameter Value

Y
ie

ld
 r

el
at

iv
e

to
 R

ef
er

en
ce

 Y
ie

ld
 (

Ye
ar

s
1−

50
)

0.0021

0.0022

0.0023

0.0024

Variance

AvC − Obs Parameters (top 5)

VOIplot2(MSE, type="OM")

Depletion Gradient in F BMSY/B0 Final historical FCatchability gradient

0.10.20.30.40.5 −0.010.000.010.02 0.350.400.45 0.5 1.0 −2 −1 0 1 2

0.00

0.25

0.50

0.75

1.00

Parameter Value

Y
ie

ld
 r

el
at

iv
e

to
 R

ef
er

en
ce

 Y
ie

ld
 (

Ye
ar

s
1−

50
)

0.006

0.008

0.010

Variance

AvC − OM Parameters (top 5)

and with a different MP and performance metric:

129

VOIplot2(MSE, MP="DCAC", PM="P100")

BMSY/B0 bias FMSY/M bias Depletion error M bias Depletion bias

0.8 1.0 1.2 1.4 0.6 0.8 1.0 1.2 0.050.060.070.080.090.100.8 1.0 1.2 1 2 3

0

1

2

3

Parameter Value

S
pa

w
ni

ng
 B

io
m

as
s

re
la

tiv
e

to
 S

B
M

S
Y

0.02

0.03

0.04

0.05

0.06

Variance

DCAC − Obs Parameters (top 5)

VOIplot2(MSE, MP="DCAC", type="OM", PM="P100")

Depletion Natural mortality Age−at−Maturity Final historical F Prob. Staying

0.10.20.30.40.50.3500.3750.4000.4250.4503 4 5 6 0.5 1.0 0.8000.8250.8500.875

0

1

2

3

Parameter Value

S
pa

w
ni

ng
 B

io
m

as
s

re
la

tiv
e

to
 S

B
M

S
Y

0.10

0.15

0.20

0.25
Variance

DCAC − OM Parameters (top 5)

The VOI2 function relates the operating model parameters and parameters of the

130 CHAPTER 16. VALUE OF INFORMATION

observation model to relative yield (yield over last 5 years of projection relative
to a ‘best F’ scenario that maximizes yield.
VOI2(MSE)

1 2 3 4 5

−
10

−
5

0
5

c(1, 5)

ra
ng

e(
O

bs
v,

 n
a.

rm
 =

 T
)

AvC

Csd

Cbias

1 2 3 4 5

−
10

−
5

0
5

c(1, 5)

ra
ng

e(
O

bs
v,

 n
a.

rm
 =

 T
)

DCAC

Mbias

Derr

Cbias

FMSY_Mbias

Csd
Dbias

1 2 3 4 5

−
10

−
5

0
5

c(1, 5)

ra
ng

e(
O

bs
v,

 n
a.

rm
 =

 T
)

matlenlim

lenMbias

Cost relative to today

%
 C

ha
ng

e
in

 y
ie

ld
 r

el
at

iv
e

to
 to

da
y

VOI2 assumes that relative cost for each type of improvement in data is linearly
related to the number of samples (e.g. nCAAobs) or square function of improved
precision and bias e.g.: relative cost = 1

(newCV/oldCV)2

The VOI features of DLMtool are continuing to be developed and more VOI
functions will be added soon.

Using Fishery Data

131

Chapter 17

The Fishery Data Object

Data is an object class in the DLMtool that contains all of the fishery information
that can be used by the Management Procedure. You find the documentation
for the Data class by typing:
class?Data

You can see from the documentation that the Data object, or Fishery Data
object, contains many slots, and a lot of information can be stored in this object,
including biological parameters, fishery statistics such as time-series of catch,
and past management recommendations.

17.1 In the MSE

In the MSE the Fishery Data object is populated with data that is generated by
the simulation model. Here the ‘true’ data generated by the model is filtered
through the Observation Model (using the Observation parameters) and entered
into the Fishery Data object to represent typical fisheries data.

The MSE consists of many hundreds of simulations, and because the DLMtool
has been designed for parallel processing, the Fishery Data object in the MSE
actually consists of hundreds of ‘versions’ of the simulated fishery data.

The first argument for all Management Procedure functions is x, which is the
position in the Data object that refers to the data corresponding that particular
iteration. In the MSE, the value of x goes from 1 to the total number of
simulations (nsim).

The second argument for all Management Procedures in the DLMtool is the
Data object.

For example, the arguments to the AvC MP are:

133

134 CHAPTER 17. THE FISHERY DATA OBJECT

args(AvC)

function (x, Data, reps = 100, plot = FALSE)
NULL

The Developing Custom Management Procedures section describes the arguments
and internal workings of the Management Procedure functions in more detail.

17.2 Application of Management Procedures
Using Real Fisheries Data

In contrast to the MSE, in the real world application of a Management Procedure,
we only have one version of the fishery data: the data that has been collected
from the fishery.

The Fishery Data object contains all of the fishery information that can be
used by a Management Procedure. By definition, many sources of data are
not available in data-limited fisheries, and the Fishery Data object may not be
completely populated. The DLMtool can be used to determine which of the
Management Procedures in the Toolkit are available to be used given the data
in the Fishery Data object, which methods cannot be used, and what data are
required to make these methods available.

Chapter 18

Example Data Objects

The DLMtool package has a number of example Fishery Data objects. This can
be listed using the avail function:
avail("Data")

[1] "Atlantic_mackerel" "China_rockfish" "Cobia" "Example_datafile" "Gulf_blue_tilefish"
[6] "ourReefFish" "Red_snapper" "SimulatedData" "Simulation_1" "China_rockfish2"
[11] "Data" "Madeup" "Recs"

135

136 CHAPTER 18. EXAMPLE DATA OBJECTS

Chapter 19

Creating Your Own Data
Object

DLMtool has a series of functions to make importing data and applying data-
limited Management Procedures relatively straightforward.

There are two approaches:

1. Fill out a .csv data file in excel or a text editor and use a DLMtool function
to create a properly formatted Data object (class Data), or

2. Create a blank Data object and populate it in R.

19.1 Creating a Data File in Excel

Probably the easiest way to get your data into the DLMtool is to populate a
data table in an Excel workbook.

You can create a Data workbook using the DataInit function, for example:
DataInit("MyData")

This will create a file ‘MyData.xlsx’ in your current working directory, which
can be populate with your fishery data.

Remember, to see the help documentation for information on the slots in the
Data object:
?class("Data")

You do not have to enter data for every line of the data file, if data are not
available simply put an ‘NA’ next to any given field.

137

138 CHAPTER 19. CREATING YOUR OWN DATA OBJECT

19.2 Importing the Data object

Once populated, the Excel Data file can be imported into R:
MyData <- XL2Data('MyData')

In this case we get an error because the Data file is empty: we haven’t populated
it with an data yet. Luckily for us, DLMtool includes several example Data files.

19.3 Example Fishery Data Files

One example Data file is the China rockfish. You can download this Data file to
your current working directory and import into R:
China_rockfish <- XL2Data("China_rockfish.csv")

The CSV files for the other example Fishery Data objects are also included in
the DLMtool package. To find the location where these files are located on your
machine, use the DLMDataDir function:
DLMDataDir()

[1] "C:/Users/User/Documents/R/win-library/3.6/DLMtool"

We can then load one of the example CSV files using the XL2Data function:
China_rockfish2 <- XL2Data(file.path(DLMDataDir(), "China_rockfish.csv"))

Warning in XL2Data(file.path(DLMDataDir(), "China_rockfish.csv")): These rows in the Data file are not valid names and were not imported:
MSY, BMSY, Sigma length composition

or the new function:
China_rockfish2 <- new("Data", file.path(DLMDataDir(),"China_rockfish.csv"))

Warning in XL2Data(stock, ...): These rows in the Data file are not valid names and were not imported:
MSY, BMSY, Sigma length composition

Alternatively, you can navigate to the data directory (DLMDataDir()) on your
machine and examine the contents and structure of the CSV data files in MS
Excel or other software.

19.4 Populating a Data Object in R

You can create a blank Data object and fill the slots directly in R. For example:

docs/ExampleData/China_rockfish.csv

19.4. POPULATING A DATA OBJECT IN R 139

Madeup <- new('Data') # Create a blank DLM object
Madeup@Name <- 'Test' # Name it
Madeup@Cat <- matrix(20:11*rlnorm(10,0,0.2),nrow=1) # Generate fake catch data
Madeup@Units <- "Million metric tonnes" # State units of catch
Madeup@AvC <- mean(Madeup@Cat) # Average catches for time t (DCAC)
Madeup@t <- ncol(Madeup@Cat) # No. yrs for Av. catch (DCAC)
Madeup@Dt <- 0.5 # Depletion over time t (DCAC)
Madeup@Dep <- 0.5 # Depletion relative to unfished
Madeup@vbK <- 0.2 # VB maximum growth rate
Madeup@vbt0 <- (-0.5) # VB theoretical age at zero length
Madeup@vbLinf <- 200 # VB maximum length
Madeup@Mort <- 0.1 # Natural mortality rate
Madeup@Abun <- 200 # Current abundance
Madeup@FMSY_M <- 0.75 # Ratio of FMSY/M
Madeup@L50 <- 100 # Length at 50% maturity
Madeup@L95 <- 120 # Length at 95% maturity
Madeup@BMSY_B0 <- 0.35 # BMSY relative to unfished

140 CHAPTER 19. CREATING YOUR OWN DATA OBJECT

Chapter 20

Plotting Data Objects

A generic summary function is available to visualize the data in a Data object.
By default the summary function waits for user input before displaying the next
plot, this option can be switched off using wait=FALSE:
summary(Cobia, wait=FALSE, rmd=TRUE)

##
##
Time-Series

##
##
Catch-at-Length

Plot 1 of 2

Catch Total Index

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

19
50

19
55

19
60

19
65

19
70

19
75

19
80

19
85

19
90

19
95

20
00

20
05

20
10

0.5

1.0

1.5

2.0

0

250

500

750

1000

1250

Year

Plot 2 of 2

141

142 CHAPTER 20. PLOTTING DATA OBJECTS

0.
0

1981
n = 3 0.

0

1982
n = 9 0.

0

1983
n = 6 0.

0

1984
n = 15 0

1985
n = 30

0

1986
n = 31 0

1987
n = 34 0

1988
n = 29 0

1989
n = 45 0

1990
n = 47

0
1991

n = 42 0

1992
n = 51 0

1993
n = 35 0

1994
n = 40 0

1995
n = 48

0

1996
n = 55 0

1997
n = 37 0

1998
n = 56 0

1999
n = 55 0

2000
n = 22

18
5

36
5

54
5

72
5

90
5

10
85

12
65

14
45

0

2001
n = 37

18
5

36
5

54
5

72
5

90
5

10
85

12
65

14
45

0
2002

n = 49

18
5

36
5

54
5

72
5

90
5

10
85

12
65

14
45

0

2003
n = 50

18
5

36
5

54
5

72
5

90
5

10
85

12
65

14
45

0

2004
n = 57

18
5

36
5

54
5

72
5

90
5

10
85

12
65

14
45

0

2005
n = 64

Length

F
re

qu
en

cy

0
4

8

2006
n = 41

0
5

10
15

2007
n = 112

0
5

10
15

2008
n = 85

18
5

27
5

36
5

45
5

54
5

63
5

72
5

81
5

90
5

99
5

10
85

11
75

12
65

13
55

14
45

0
2

4
6

8

2009
n = 61

18
5

27
5

36
5

45
5

54
5

63
5

72
5

81
5

90
5

99
5

10
85

11
75

12
65

13
55

14
45

0
5

15

2010
n = 100

18
5

27
5

36
5

45
5

54
5

63
5

72
5

81
5

90
5

99
5

10
85

11
75

12
65

13
55

14
45

0
2

4
6

8

2011
n = 52

Length

F
re

qu
en

cy

##
##
Parameter Distributions

143

Natural Mortality rate von B. k parameter von B. Linf parameter

0.0 0.5 1.0 1.5 2.0 0.25 0.30 1000 2000 3000

0

200

400

600

0

100

200

300

400

0

400

800

1200

Parameter Value

F
re

qu
en

cy

144 CHAPTER 20. PLOTTING DATA OBJECTS

Chapter 21

Determining Feasible and
Available Management
Procedures

Although all management procedures can be tested in the simulation, it is often
the case that not all MPs can actually be applied in a fishery. This can happen
for two reasons:

1. Insufficient data exists to use an MP, for example, a MP may use catch-at-
age data which does not exist for the fishery

2. Management constraints such as issues with enforcement or legal require-
ments may mean some management options are not possible.

Management procedures which can be applied given the current fishery data are
referred to as Available.

Management procedures that return management recommendations that are, at
least in theory, applicable to the fishery are referred to as Feasible.

DLMtool has functions to identify MPs that are Available and Feasible, and
also provides information for what additional data are required to allow Not
Available MPs to be used.

21.1 Feasible MPs

The Fease function can be used to determine which MPs are Feasible.

For example, if only TAC management is feasible in a fishery, the feasible MPs
are:

145

146CHAPTER 21. DETERMINING FEASIBLE AND AVAILABLE MANAGEMENT PROCEDURES

Fease(TAC=TRUE, TAE=FALSE, SL=FALSE, Spatial=FALSE)

Feasible management:

TAC - total allowable catch

No Data object provided. Returning feasible MPs

[1] "AvC" "avgMP" "BK" "BK_CC" "BK_ML" "CC1" "CC2" "CC3"
[9] "CC4" "CC5" "CompSRA" "CompSRA4010" "CurC" "DAAC" "DBSRA" "DBSRA_40"
[17] "DBSRA4010" "DCAC" "DCAC_40" "DCAC_ML" "DCAC4010" "DCACs" "DD" "DD4010"
[25] "DepF" "DynF" "Fadapt" "Fdem" "Fdem_CC" "Fdem_ML" "FMSYref" "FMSYref50"
[33] "FMSYref75" "Fratio" "Fratio_CC" "Fratio_ML" "Fratio4010" "GB_CC" "GB_slope" "GB_target"
[41] "Gcontrol" "HDAAC" "ICI" "ICI2" "Iratio" "Islope1" "Islope2" "Islope3"
[49] "Islope4" "IT10" "IT5" "Itarget1" "Itarget2" "Itarget3" "Itarget4" "ITM"
[57] "L95target" "Lratio_BHI" "Lratio_BHI2" "Lratio_BHI3" "LstepCC1" "LstepCC2" "LstepCC3" "LstepCC4"
[65] "Ltarget1" "Ltarget2" "Ltarget3" "Ltarget4" "MCD" "MCD4010" "NFref" "NMref"
[73] "Rcontrol" "Rcontrol2" "SBT1" "SBT2" "SPmod" "SPMSY" "SPslope" "SPSRA"
[81] "SPSRA_ML" "TCPUE"

We can confirm that all of these MPs are output controls (return a TAC) by
using the MPtype function:
feaseMPs <- Fease(TAC=TRUE, TAE=FALSE, SL=FALSE, Spatial=FALSE)

Feasible management:

TAC - total allowable catch

No Data object provided. Returning feasible MPs
MPtype(feaseMPs)

MP Type Recs
1 AvC Output TAC
2 avgMP Output TAC
3 BK Output TAC
4 BK_CC Output TAC
5 BK_ML Output TAC
6 CC1 Output TAC
7 CC2 Output TAC
8 CC3 Output TAC
9 CC4 Output TAC
10 CC5 Output TAC
11 CompSRA Output TAC
12 CompSRA4010 Output TAC
13 CurC Output TAC
14 DAAC Output TAC
15 DBSRA Output TAC
16 DBSRA_40 Output TAC

21.1. FEASIBLE MPS 147

17 DBSRA4010 Output TAC
18 DCAC Output TAC
19 DCAC_40 Output TAC
20 DCAC_ML Output TAC
21 DCAC4010 Output TAC
22 DCACs Output TAC
23 DD Output TAC
24 DD4010 Output TAC
25 DepF Output TAC
26 DynF Output TAC
27 Fadapt Output TAC
28 Fdem Output TAC
29 Fdem_CC Output TAC
30 Fdem_ML Output TAC
31 Fratio Output TAC
32 Fratio_CC Output TAC
33 Fratio_ML Output TAC
34 Fratio4010 Output TAC
35 GB_CC Output TAC
36 GB_slope Output TAC
37 GB_target Output TAC
38 Gcontrol Output TAC
39 HDAAC Output TAC
40 ICI Output TAC
41 ICI2 Output TAC
42 Iratio Output TAC
43 Islope1 Output TAC
44 Islope2 Output TAC
45 Islope3 Output TAC
46 Islope4 Output TAC
47 IT10 Output TAC
48 IT5 Output TAC
49 Itarget1 Output TAC
50 Itarget2 Output TAC
51 Itarget3 Output TAC
52 Itarget4 Output TAC
53 ITM Output TAC
54 L95target Output TAC
55 Lratio_BHI Output TAC
56 Lratio_BHI2 Output TAC
57 Lratio_BHI3 Output TAC
58 LstepCC1 Output TAC
59 LstepCC2 Output TAC
60 LstepCC3 Output TAC
61 LstepCC4 Output TAC
62 Ltarget1 Output TAC

148CHAPTER 21. DETERMINING FEASIBLE AND AVAILABLE MANAGEMENT PROCEDURES

63 Ltarget2 Output TAC
64 Ltarget3 Output TAC
65 Ltarget4 Output TAC
66 MCD Output TAC
67 MCD4010 Output TAC
68 Rcontrol Output TAC
69 Rcontrol2 Output TAC
70 SBT1 Output TAC
71 SBT2 Output TAC
72 SPmod Output TAC
73 SPMSY Output TAC
74 SPslope Output TAC
75 SPSRA Output TAC
76 SPSRA_ML Output TAC
77 TCPUE Output TAC
78 FMSYref Reference TAC
79 FMSYref50 Reference TAC
80 FMSYref75 Reference TAC
81 NFref Reference TAC
82 NMref Reference TAC

If a Data object is provided to Fease, the function will return the names of MPs
that are both feasible in terms of management methods, and available in terms
of the fishery data:
feaseMPs <- Fease(Atlantic_mackerel, TAC=FALSE, TAE=TRUE, SL=TRUE, Spatial=FALSE)

Feasible management:

TAE - total allowable effort

SL - size selectivity

Data object provided. Returning feasible and available MPs

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

21.2. AVAILABLE MPS 149

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced
MPtype(feaseMPs)

MP Type Recs
1 curE Input TAE
2 curE75 Input TAE
3 DDe Input TAE
4 DDe75 Input TAE
5 DDes Input TAE
6 DTe40 Input TAE
7 DTe50 Input TAE
8 ItargetE1 Input TAE
9 ItargetE2 Input TAE
10 ItargetE3 Input TAE
11 ItargetE4 Input TAE
12 matlenlim Input SL
13 matlenlim2 Input SL
14 minlenLopt1 Input SL
15 slotlim Input SL
16 TCPUE_e Input TAE

21.2 Available MPs

The Can function generates a list of the MPs that are available to be applied to
the Data object:
Can(Atlantic_mackerel)

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

150CHAPTER 21. DETERMINING FEASIBLE AND AVAILABLE MANAGEMENT PROCEDURES

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

[1] "AvC" "AvC_MLL" "BK" "CC1" "CC2" "CC3" "CC4"
[8] "CC5" "CurC" "curE" "curE75" "DAAC" "DBSRA" "DBSRA_40"
[15] "DBSRA4010" "DCAC" "DCAC_40" "DCAC4010" "DCACs" "DD" "DD4010"
[22] "DDe" "DDe75" "DDes" "DepF" "DTe40" "DTe50" "DynF"
[29] "Fadapt" "Fdem" "Fratio" "Fratio4010" "GB_slope" "Gcontrol" "HDAAC"
[36] "ICI" "ICI2" "Iratio" "Islope1" "Islope2" "Islope3" "Islope4"
[43] "Itarget1" "Itarget1_MPA" "Itarget2" "Itarget3" "Itarget4" "ItargetE1" "ItargetE2"
[50] "ItargetE3" "ItargetE4" "matlenlim" "matlenlim2" "MCD" "MCD4010" "minlenLopt1"
[57] "MRnoreal" "MRreal" "NFref" "Rcontrol" "Rcontrol2" "SBT1" "slotlim"
[64] "SPmod" "SPMSY" "SPslope" "SPSRA" "YPR" "avgMP" "TCPUE_e"
[71] "THC"

If all management methods are feasible, the list of MPs returned by the Can
function will be the same as those returned by the Fease function when the
Data object is provided.

21.3 Unavailable MPs

The Cant function displays a list of the MPs that cannot be applied to the Data
object together with the reason why:
Cant(Atlantic_mackerel)

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

21.3. UNAVAILABLE MPS 151

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

[,1] [,2]
[1,] "BK_CC" "Missing data: CAA"
[2,] "BK_ML" "Missing data: Lc, Lbar, CAL"
[3,] "CompSRA" "Missing data: CAA"
[4,] "CompSRA4010" "Missing data: CAA"
[5,] "DCAC_ML" "Missing data: Lc, Lbar, CAL"
[6,] "EtargetLopt" "Missing data: ML"
[7,] "Fdem_CC" "Missing data: CAA"
[8,] "Fdem_ML" "Missing data: Lc, Lbar, CAL"
[9,] "FMSYref" "MP returned an error. Check MP function and/or Data object."
[10,] "FMSYref50" "MP returned an error. Check MP function and/or Data object."
[11,] "FMSYref75" "MP returned an error. Check MP function and/or Data object."
[12,] "Fratio_CC" "Missing data: CAA"
[13,] "Fratio_ML" "Missing data: Lc, Lbar, CAL"
[14,] "GB_CC" "Missing data: Cref"
[15,] "GB_target" "Missing data: Cref, Iref"
[16,] "IT10" "Missing data: MPrec, Iref"
[17,] "IT5" "Missing data: MPrec, Iref"
[18,] "ITe10" "Missing data: Iref"
[19,] "ITe5" "Missing data: Iref"
[20,] "ITM" "Missing data: MPrec, Iref"
[21,] "L95target" "Missing data: ML"
[22,] "LBSPR" "Missing data: CAL"
[23,] "LBSPR_MLL" "Missing data: CAL"
[24,] "Lratio_BHI" "Missing data: CAL"
[25,] "Lratio_BHI2" "Missing data: CAL"
[26,] "Lratio_BHI3" "Missing data: CAL"
[27,] "LstepCC1" "Missing data: ML"
[28,] "LstepCC2" "Missing data: ML"
[29,] "LstepCC3" "Missing data: ML"
[30,] "LstepCC4" "Missing data: ML"
[31,] "LstepCE1" "Missing data: ML"
[32,] "LstepCE2" "Missing data: ML"
[33,] "Ltarget1" "Missing data: ML"
[34,] "Ltarget2" "Missing data: ML"
[35,] "Ltarget3" "Missing data: ML"

152CHAPTER 21. DETERMINING FEASIBLE AND AVAILABLE MANAGEMENT PROCEDURES

[36,] "Ltarget4" "Missing data: ML"
[37,] "LtargetE1" "Missing data: ML"
[38,] "LtargetE4" "Missing data: ML"
[39,] "SBT2" "Missing data: Rec, Cref"
[40,] "SPSRA_ML" "Missing data: Lc, Lbar, CAL"
[41,] "YPR_CC" "Missing data: CAA"
[42,] "YPR_ML" "Missing data: Lc, Lbar, CAL"
[43,] "NMref" "Produced all NA scores. Check MP function and/or Data object."
[44,] "TCPUE" "Missing data: MPrec"

Chapter 22

Applying Management
Procedures

The runMP function can be used to apply a MP to a Data object. For example,
to apply the AvC method:
runMP(Atlantic_mackerel, "AvC", reps=1000)

TAC
AvC 24.33

The runMP prints out the MP recommendations to the console. In the case of a
TAC, where multiple repititions where (see reps = 1000 above) used the runMP
function prints the median TAC recommendation.

Although it only displays a summary, runMP invisibly returns the Data object
with the TAC slot populated:
Recs <- runMP(Atlantic_mackerel, "AvC")

TAC
AvC 24.76
hist(Recs@TAC)

153

154 CHAPTER 22. APPLYING MANAGEMENT PROCEDURES

Histogram of Recs@TAC

Recs@TAC

F
re

qu
en

cy

15 20 25 30 35

0
5

10
15

runMP can be used to run several MPs:
runMP(Atlantic_mackerel, c("AvC", "AvC_MLL"))

TAC LR5 LFR
AvC 24.54
AvC_MLL 23.88 90.25 95

Or all available MPs:
Atlantic_mackerel <- runMP(Atlantic_mackerel, reps=1000)

running all available MPs

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

155

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CC1 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CC2 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CC3 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CC4 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CC5 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method CurC produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method Islope1 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method Islope2 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method Islope3 produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method Islope4 produced greater than 50% NA values

Method Rcontrol produced greater than 50% NA values

Warning in rlnorm(reps, mconv(mu, mu * cv), sdconv(mu, mu * cv)): NAs produced

Method SBT1 produced greater than 50% NA values

156 CHAPTER 22. APPLYING MANAGEMENT PROCEDURES

TAC Effort LR5 LFR HS Area 1 Area 2
AvC 24.70
AvC_MLL 24.44 90.25 95.00
BK 11.13
CC1 23.74
CC2 20.48
CC3 18.82
CC4 16.50
CC5 14.09
CurC 18.28
curE 1.00
curE75 0.75
DAAC 2.87
DBSRA 6.22
DBSRA_40 9.83
DBSRA4010 3.97
DCAC 5.70
DCAC_40 7.16
DCAC4010 1.48
DCACs 5.81
DD 1.99
DD4010 0.45
DDe 0.09
DDe75 0.07
DDes 0.90
DepF 2.88
DTe40 0.90
DTe50 0.90
DynF 4.92
Fadapt 8.13
Fdem 4.70
Fratio 3.70
Fratio4010 2.24
GB_slope 15.14
Gcontrol 6.53
HDAAC 2.86
ICI 13.75
ICI2 13.98
Iratio 10.24
Islope1 16.90
Islope2 15.22
Islope3 12.47
Islope4 13.23
Itarget1 7.10
Itarget1_MPA 7.03 0 1
Itarget2 7.08

157

Itarget3 7.09
Itarget4 4.94
ItargetE1 0.85
ItargetE2 0.85
ItargetE3 0.85
ItargetE4 0.85
matlenlim 90.25 95.00
matlenlim2 99.28 104.50
MCD 14.29
MCD4010 8.88
minlenLopt1 89.75 99.72
MRnoreal 0 1
MRreal 0 1
NFref 0.01
Rcontrol 6.53
Rcontrol2 6.53
SBT1 14.16
slotlim 99.28 104.50 142.55
SPmod 15.90
SPMSY 12.04
SPslope 13.85
SPSRA 5.75
YPR 8.09
avgMP 8.62
TCPUE_e 0.95
THC 42.98

The TAC recommendations from each Output control can be plotted:
boxplot(Atlantic_mackerel)

158 CHAPTER 22. APPLYING MANAGEMENT PROCEDURES

DD4010
DD

HDAAC
DepF

DBSRA4010
DynF

DCAC
DCACs

Gcontrol
Rcontrol2

Itarget2
Itarget1

YPR
avgMP

DBSRA_40
BK

Islope3
ICI

ICI2
SBT1

GB_slope
SPmod
Islope1

CC3
CC1
AvC

0 10 20 30 40 50

TAC (thousand tonnes)

M
an

ag
em

en
t P

ro
ce

du
re

s

MP Median SD Units
1 DD4010 0.45 0.28 thousand tonnes
2 DCAC4010 1.48 1.01 thousand tonnes
3 DD 1.99 0.85 thousand tonnes
4 Fratio4010 2.24 2.08 thousand tonnes
5 HDAAC 2.86 1.30 thousand tonnes
6 DAAC 2.87 1.31 thousand tonnes
7 DepF 2.88 2.09 thousand tonnes
8 Fratio 3.70 2.27 thousand tonnes
9 DBSRA4010 3.97 5.27 thousand tonnes
10 Fdem 4.70 1.83 thousand tonnes

159

11 DynF 4.92 2.14 thousand tonnes
12 Itarget4 4.94 0.46 thousand tonnes
13 DCAC 5.70 1.86 thousand tonnes
14 SPSRA 5.75 3.37 thousand tonnes
15 DCACs 5.81 1.84 thousand tonnes
16 DBSRA 6.22 4.42 thousand tonnes
17 Gcontrol 6.53 0.04 thousand tonnes
18 Rcontrol 6.53 0.00 thousand tonnes
19 Rcontrol2 6.53 0.00 thousand tonnes
20 Itarget1_MPA 7.03 0.62 thousand tonnes
21 Itarget2 7.08 0.65 thousand tonnes
22 Itarget3 7.09 0.63 thousand tonnes
23 Itarget1 7.10 0.64 thousand tonnes
24 DCAC_40 7.16 2.07 thousand tonnes
25 YPR 8.09 3.59 thousand tonnes
26 Fadapt 8.13 0.05 thousand tonnes
27 avgMP 8.62 1.94 thousand tonnes
28 MCD4010 8.88 8.07 thousand tonnes
29 DBSRA_40 9.83 3.00 thousand tonnes
30 Iratio 10.24 4.14 thousand tonnes
31 BK 11.13 4.16 thousand tonnes
32 SPMSY 12.04 7.96 thousand tonnes
33 Islope3 12.47 1.21 thousand tonnes
34 Islope4 13.23 1.15 thousand tonnes
35 ICI 13.75 2.79 thousand tonnes
36 SPslope 13.85 1.46 thousand tonnes
37 ICI2 13.98 2.89 thousand tonnes
38 CC5 14.09 1.32 thousand tonnes
39 SBT1 14.16 3.29 thousand tonnes
40 MCD 14.29 6.23 thousand tonnes
41 GB_slope 15.14 1.52 thousand tonnes
42 Islope2 15.22 1.45 thousand tonnes
43 SPmod 15.90 3.57 thousand tonnes
44 CC4 16.50 1.39 thousand tonnes
45 Islope1 16.90 1.37 thousand tonnes
46 CurC 18.28 3.88 thousand tonnes
47 CC3 18.82 1.41 thousand tonnes
48 CC2 20.48 1.94 thousand tonnes
49 CC1 23.74 2.07 thousand tonnes
50 AvC_MLL 24.44 5.01 thousand tonnes
51 AvC 24.70 5.10 thousand tonnes
52 THC 42.98 4.33 thousand tonnes

160 CHAPTER 22. APPLYING MANAGEMENT PROCEDURES

Advanced DLMtool

161

Chapter 23

Averaging MPs

In some cases users may wish to provide management advice by averaging the
recommendations from several different well-performing management procedures.
This of course is a new management procedure in itself, and should be tested in
MSE before being adopted for use in a fishery.

The makeMeanMP function can be used to create a new MP that averages the
results of several MPs.

For example, suppose we wished to develop an MP that averages the results of 4
output control MPs: BK, DBSRA, Fadapt and Rcontrol.

This can be achieved by the following:
avgMP <- makeMeanMP(c("BK", "DBSRA", "Fadapt", "Rcontrol"))
class(avgMP)

[1] "MP"

And now we can test our new MP in MSE. We will run a decent run of simulations
so the results are stable:
OM <- DLMtool::testOM
OM@nsim <- 200
MSE <- runMSE(OM, MPs=c("avgMP", "BK", "DBSRA", "Fadapt", "Rcontrol"), parallel = TRUE)

Exporting custom MPs in global environment

Running MSE in parallel on 10 processors

MSE completed

How did our newly created averaging MP perform?
Tplot(MSE)

163

164 CHAPTER 23. AVERAGING MPS

avgMP

BK

DBSRA

Fadapt

Rcontrol

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. F < FMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

avgMP

BK

DBSRA

Fadapt

Rcontrol

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

avgMP

BK

DBSRA

Fadapt

Rcontrol

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

avgMP

BK

DBSRA

Fadapt

Rcontrol

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Output

MP PNOF LTY P100 P50 P10 Satisificed
1 avgMP 0.50 0.85 0.43 0.69 0.93 FALSE
2 BK 0.42 0.56 0.34 0.52 0.81 FALSE
3 DBSRA 0.66 0.91 0.58 0.85 0.99 TRUE
4 Fadapt 0.50 0.67 0.46 0.64 0.83 FALSE
5 Rcontrol 0.91 0.37 0.88 0.95 0.99 FALSE

More information on creating your own MPs can be found in the Developing
Custom Management Procedures chapter.

Chapter 24

Evaluating OM

The Turing function has been designed to evaluate an Operating Model against
a Data object from the same fishery. The function generates 5 random samples
of Data from the OM object and plots these together with the corresponding data
in the Data object.

Ideally, in a well conditioned OM one should not be able to visually detect which
of the plots are the real data and which have been artifically generated by the
operating model.

The Turing function takes an object of class OM and an object of class Data.
It first plots the simulated and real data and then waits for user input before
revelaing which of the plots are the real data from the Data object.

We use the wait=FALSE argument here so that each plot is printed without
waiting for user input.

In this example we are using a Data object that was simulated using the same
OM, so it shouldn’t be suprising that it is difficult to detect which of the plots
are from the Data object:
Turing(DLMtool::testOM, DLMtool::SimulatedData, wait=FALSE)

Simulating Data

Randomly sampling 5 iterations

Plotting: Catch Data

165

166 CHAPTER 24. EVALUATING OM

0.
0

1.
0

2.
0

3.
0

0 10 20 30 40 50

0.
0

1.
0

2.
0

3.
0

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

C
at

ch

Catch Data

Plotting: Index Data

0.
0

1.
0

2.
0

3.
0

0 10 20 30 40 50

0.
0

1.
0

2.
0

3.
0

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

C
at

ch

Catch Data

167

1
2

3
4

0 10 20 30 40 50

1
2

3
4

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

In
de

x
Index Data

Plotting: Recruitment Data

1
2

3
4

0 10 20 30 40 50

1
2

3
4

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

In
de

x

Index Data

168 CHAPTER 24. EVALUATING OM

0.
5

1.
5

2.
5

0 10 20 30 40 50

0.
5

1.
5

2.
5

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

R
ec

ru
itm

en
t

Recruitment Data

Plotting: Mean Length Data

0.
5

1.
5

2.
5

0 10 20 30 40 50

0.
5

1.
5

2.
5

0 10 20 30 40 50 0 10 20 30 40 50

Year

S
t.

R
ec

ru
itm

en
t

Recruitment Data

169

65
70

75
80

0 10 20 30 40 50

65
70

75
80

0 10 20 30 40 50 0 10 20 30 40 50

Year

M
ea

n
Le

ng
th

Mean Length Data

Plotting: Lbar Data

65
70

75
80

0 10 20 30 40 50

65
70

75
80

0 10 20 30 40 50 0 10 20 30 40 50

Year

M
ea

n
Le

ng
th

Mean Length Data

170 CHAPTER 24. EVALUATING OM

70
80

90
10

0

0 10 20 30 40 50

70
80

90
10

0

0 10 20 30 40 50 0 10 20 30 40 50

Year

Lb
ar

Lbar Data

Plotting: Catch-at-Age Data

70
80

90
10

0

0 10 20 30 40 50

70
80

90
10

0

0 10 20 30 40 50 0 10 20 30 40 50

Year

Lb
ar

Lbar Data

171

0
0

0
0

0

1 4 7 10 13

0

1 4 7 10 13 1 4 7 10 13 1 4 7 10 13

Age

C
ou

nt
Catch−at−Age Data

Plotting: Catch-at-Length Data

0
0

0
0

0

1 4 7 10 13

0

1 4 7 10 13 1 4 7 10 13 1 4 7 10 13

Age

C
ou

nt

Catch−at−Age Data

172 CHAPTER 24. EVALUATING OM

0
50

0
50

0
50

0
50

0
50

27 51 75 99 129

0
50

27 51 75 99 129 27 51 75 99 129 27 51 75 99 129

Length

C
ou

nt

Catch−at−Length Data

0
50

0
50

0
50

0
50

0
50

27 51 75 99 129

0
50

27 51 75 99 129 27 51 75 99 129 27 51 75 99 129

Length

C
ou

nt

Catch−at−Length Data

The Turing function is useful for evaluating if your OM adequately produces
fishery data that appears similiar (e.g as variable) as your real observed data.

Chapter 25

Customizing the Operating
Model

25.1 Accounting for Historical Changes in Fish-
ing

In some circumstances there may be knowledge on the changes in fishing practices
over the years, and it would be good to include this information in the Operating
Model.

The Operating Model can be conditioned with respect to historical trends in the
fishing mortality, historical changes in the selectivity pattern, and the existence
of MPAs.

Remember to update and recompile the OM documentation whenever the OM
is modified.

25.1.1 Historical Trends in Fishing Mortality

Suppose that we know the fishery began in 1950, and fishing effort increased
slowly over the next decade, was relatively stable between 1960 and 1970, then
increased dramatically over the next 10 years. We also know that, while fishing
effort stayed relatively constant from 1980 to around 2000, there has been a
general decline in fishing effort in recent years.

This information can be included in the Operating Model by using the
ChooseEffort function. The ChooseEffort function takes an existing Fleet
object as its first argument, and allows the user to manually map out the

173

174 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

range for the historical trend in fishing effort. The ChooseEffort function then
returns the updated Fleet object.

A second optional argument can be used to specify the historical years. If used,
this will replace the nyears in the Fleet object with the length of the Years
vector.
MyFleet <- ChooseEffort(MyFleet, Years=1950:2016)

25.1. ACCOUNTING FOR HISTORICAL CHANGES IN FISHING 175

176 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

If we take a look at the MyFleet object, we will see that three slots EffYears,
EffLower and EffUpper have been replaced with the new values.

Note that the trajectory that is mapped out here represents the bounds on the
relative fishing mortality for each year. In this example, the fishing mortality
rate was highest (on average) between 1980 and 2000, and is currently around
65 - 80% of this maximum level.

25.1.2 Historical Trends in Selectivity Pattern

Suppose that we may knew there had been changes in the selectivity pattern of
the fishery over time. This information can be included in the Operating Model
by using the ChooseSelect function.

Like the ChooseEffort function described above, the ChooseSelection function
takes a Fleet object as it’s first argument, and returns an updated Fleet object.

Suppose the selectivity pattern changed in 1970 and then again in 1990, perhaps
because of changes in fishing regulations. These change points in the selectivity
curve can be mapped by the following command:
MyFleet <- ChooseSelect(MyFleet, FstYr=1950, SelYears=c(1970, 1990))

25.1. ACCOUNTING FOR HISTORICAL CHANGES IN FISHING 177

178 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

Note that the first year (FstYr) must also be specified, and the selectivity pattern
is mapped for this year as well.

When ChooseSelect is used, the L5Lower, L5Upper, LFSLower, LFSUpper,
VmaxLower, VmaxUpper, and SelYears slots are updated in the Fleet object.
If these slots are populated, the values in the L5, LFS, and Vmaxlen slots are
ignored in the operating model.

25.1.3 Including Existing MPAs

By default the MSE assumes that there are no spatial closures in the historical
period. Existing spatial closures can be accounted for with the MPA slot in the
Fleet or OM object.

To account for historical MPAs, the MPA slot should be a matrix with each
row should containing a year index (e.g 10 for 10th historical year) followed by
fraction of area open to fishing for each area. i.e. each row represents a change
and the number of columns is nareas (default is 2) + 1.

The spatial closures are assumed to remain in place for the future projections
unless changed by a MP. Default (if left blank) is all areas are open to fishing in
historical period.

For example:
OM <- new("OM", Albacore, Generic_Fleet, Perfect_Info, Perfect_Imp)

50% of Area 1 was closed 30 years ago
cl1 <- c(OM@nyears-30, 0.5, 1)
80% of Area 1 was closed 15 years ago
cl2 <- c(OM@nyears-15, 0.2, 1)
100% of Area 1 was closed last year
cl3 <- c(OM@nyears-1, 0, 1)

OM@MPA <- matrix(c(cl1, cl2, cl3), ncol=3, byrow=TRUE)
plotMPA(OM)

Warning: 'plotMPA' is deprecated.
Use 'plot("MPA", Fleet, Stock' instead.
See help("Deprecated")

25.2. SIZE-SPECIFIC NATURAL MORTALITY 179

−49 −39 −29 −19 −9 1 6 16 26 36 46
Years

1

2

A
re

as

Fraction open to fishing (grey) (sim = 14)

25.2 Size-Specific Natural Mortality

25.2.1 Constant M at age/size

By default DLMtool assumes that natural mortality (M) is constant across age
and size classes. However, in many species M is known to vary by size, and is
often assumed to be higher for smaller age-classes and reduces as individuals
age and grow.

A number of users requested the option to include age or size-specific M and
this has now been added to DLMtool.

There are a number of ways to specify age or size-specific M in DLMtool.

25.2.2 Lorenzen function of weight

Natural mortality is often assumed to be a function of weight. Size-specific M
can be included in DLMtool following the approach of Lorenzen (1996):

Mw = M

(
W

W∞

)b

180 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

where Mw is the natural mortality at weight W , M is the natural mortality rate
of adult fish, W∞ is the asymptotic weight, and b is the allometric scaling factor
(Stock@Mexp). Lorezen (1996) found that the exponent b had an average value
of -0.288, with 90% confidence intervals of -0.315 – -0.261 for fish from natural
systems.

Because DLMtool uses an age-structured model, M is calculated as a function
of age:

Ma = M

(
Wa

W∞

)b

where Ma is natural mortality at age a and Wa is the mean weight at age a.
M -at-age is then rescaled so that the mean M of adult age classes (mean age of
maturity and greater) is equal to the natural mortality rate sampled from the
stock object (Stock@M).

The plotM function can be used to visually inspect samples of the M -at-age,
-length, and -weight that are generated by the model:
Mackerel@Mexp <- c(-0.315, -0.261)
plotM(Mackerel)

Warning: 'plotM' is deprecated.
Use 'plot("M", Stock' instead.
See help("Deprecated")

0 5 10 15 20 25 30

0.0
0.1
0.2
0.3
0.4
0.5

M

20 25 30 35 40

0.0
0.1
0.2
0.3
0.4
0.5

First Historical Year

0.1 0.3 0.5 0.7

0.0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

0.0
0.1
0.2
0.3
0.4
0.5

M

20 25 30 35 40

0.0
0.1
0.2
0.3
0.4
0.5

Last Historical Year

0.1 0.3 0.5

0.0
0.1
0.2
0.3
0.4
0.5

0 5 10 15 20 25 30

0.0
0.1
0.2
0.3
0.4
0.5

M

Age
20 25 30 35 40

0.0
0.1
0.2
0.3
0.4
0.5

Length

Last Projection Year

0.1 0.3 0.5

0.0
0.1
0.2
0.3
0.4
0.5

Weight

25.2. SIZE-SPECIFIC NATURAL MORTALITY 181

25.2.3 Map Age-Specific M

Usually the M slot contains two values, a lower and upper bound for the constant
M -at-age. Users who wish for more control of M -at-age can use the M and M2
slots in the Stock object to directly input values for M -at-age (M for lower bound
and M2 for upper bound). maxage values of M must be supplied for slots M and
M2. One way to do this is to use the ChooseM function to map out the bounds
for age-specific M :
OM <- new("OM", Blue_shark, Generic_FlatE, Generic_Obs, Perfect_Imp)
OM <- ChooseM(OM)

Click here for a larger version of the image.

Alternatively, users can input the values directly into the M and M2 slots (must
be length maxage):
OM <- new("OM", Albacore, Generic_FlatE, Generic_Obs, Perfect_Imp)
OM@M <- c(0.7, 0.65, 0.60, 0.55, 0.61, 0.68, 0.75, 0.63, 0.51, 0.39, 0.27, 0.15, 0.15, 0.15, 0.15)

images/chooseM_age.png

182 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

OM@M2 <- c(0.85, 0.8, 0.75, 0.7, 0.76, 0.83, 0.9, 0.78, 0.66, 0.54, 0.42, 0.3, 0.3, 0.3, 0.3)

The plotM function can then be used to visually display samples of the resulting
M at age and size:
plotM(OM)

Warning: 'plotM' is deprecated.
Use 'plot("M", Stock' instead.
See help("Deprecated")

2 4 6 8 10 14

0.0

0.2

0.4

0.6

0.8

M

60 80 100 120

0.0

0.2

0.4

0.6

0.8

First Historical Year

10 20 30 40

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 14

0.0

0.2

0.4

0.6

0.8

M

60 80 100 120

0.0

0.2

0.4

0.6

0.8

Last Historical Year

10 20 30 40

0.0

0.2

0.4

0.6

0.8

2 4 6 8 10 14

0.0

0.2

0.4

0.6

0.8

M

Age
60 80 100 120

0.0

0.2

0.4

0.6

0.8

Length

Last Projection Year

10 20 30 40

0.0

0.2

0.4

0.6

0.8

Weight

25.2.4 Map Length-Specific M

There is also the option to map length-specific M using the plotting tool:
OM <- new("OM", Albacore, Generic_FlatE, Generic_Obs, Perfect_Imp)
OM <- ChooseM(OM, "length")

25.2. SIZE-SPECIFIC NATURAL MORTALITY 183

Click here for a larger version of the image.

This option uses the Custom Parameters feature of DLMtool:
str(OM@cpars)

List of 1
$ M_at_Length:'data.frame': 42 obs. of 3 variables:
..$ Lens: int [1:42] 0 5 10 15 20 25 30 35 40 45 ...
..$ M1 : num [1:42] 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.725 ...
..$ M2 : num [1:42] 0.9 0.9 0.9 0.9 0.9 ...

images/chooseM_length.png

184 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

Again, samples of the resulting M at age and size can be plotted:
plotM(OM)

Warning: 'plotM' is deprecated.
Use 'plot("M", Stock' instead.
See help("Deprecated")

valid custom parameters (OM@cpars) found:
M_at_Length

2 4 6 8 10 14

0.0
0.2
0.4
0.6
0.8

M

40 60 80 100 120

0.0
0.2
0.4
0.6
0.8

First Historical Year

0 10 20 30 40

0.0
0.2
0.4
0.6
0.8

2 4 6 8 10 14

0.0
0.2
0.4
0.6
0.8

M

40 60 80 100 120

0.0
0.2
0.4
0.6
0.8

Last Historical Year

0 10 20 30 40 50

0.0
0.2
0.4
0.6
0.8

2 4 6 8 10 14

0.0
0.2
0.4
0.6
0.8

M

Age
40 60 80 100 120

0.0
0.2
0.4
0.6
0.8

Length

Last Projection Year

0 10 20 30 40 50

0.0
0.2
0.4
0.6
0.8

Weight

25.3 Selection, Retention and Discard Mortality

Note that if OM@isRel == FALSE the selectivity and retention parameters are
either in absolute units, the same units as OM@Linf and OM@L50.

If OM@isRel == TRUE the selectivity and retention parameters are assumed to
be multiples of the length at maturity (OM@L50).

25.3.1 Fishery Selection Curve

The fishery selection or vulnerability to the fishing gear in DLMtool is modelled
using a double-normal curve and the parameters in the Fleet object: L5 -
smallest length at 5% selection, LFS - smallest length at full selection, and

25.3. SELECTION, RETENTION AND DISCARD MORTALITY 185

Vmaxlen the vulnerability of the largest length class (defined as expected length
at maximum age Stock@maxage).

Here we set up a Operating Model with dome-shaped selectivity and plot a
sample of the selectivity-at-age and -length using the plotSelect function:
OM <- new("OM", Albacore, FlatE_Dom, Generic_Obs, Perfect_Imp, nsim=5)
plotSelect(OM, sim=1)

Warning: 'plotSelect' is deprecated.
Use 'plot("Selectivity", Fleet, Stock' instead.
See help("Deprecated")

2 6 10 14

Age

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n Year 1

0 50 100 150

Length

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n

2 6 10 14

Age

Year 34

0 50 100 150

Length

2 6 10 14

Age

Year 67

0 50 100 150

Length

2 6 10 14

Age

Year 100

Vulnerability
Realized Selection
Retention

0 50 100 150

Length

Selection and Retention curves for simulation: 1

The plot shows three curves - vulnerability, realized selection and retention - in
each panel. In this case they are all the same, because the default setting of
DLMtool is to assume that all selected fish are retained in the catch.

25.3.2 Fishery Retention Curve

In some cases the fishing gear selects fish (often small sizes) that are not retained
in the catch and are discarded at sea. The fishery-retention curve can be specified
following the same approach as selectivity, using the following slots in the Fleet
or OM object:

• LR5 - the smallest length at 5% retention
• LFR - the smallest length at full retention

186 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

• Rmaxlen - the retention of the largest size class (defined as expected length
at maximum age Stock@maxage).

The default values for these parameters are:
OM@LR5

[1] 0 0
OM@LFR

[1] 0 0
OM@Rmaxlen

[1] 1 1

meaning that the default assumption is that all size classes are fully retained by
the fishery.

The retention curve can be modified by providing values for these slots:
OM@LR5 <- c(0.6, 0.7)
OM@LFR <- c(0.9, 1)

Note that the values in the LR5 and LFR slots must be in the same units as those
in the L5 and LFS slots. Here we are specifying the values relative to the size of
maturity, and assuming that the fishery discards the smaller sized fish:
plotSelect(OM, sim=1)

Warning: 'plotSelect' is deprecated.
Use 'plot("Selectivity", Fleet, Stock' instead.
See help("Deprecated")

25.3. SELECTION, RETENTION AND DISCARD MORTALITY 187

2 6 10 14

Age

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n Year 1

0 50 100 150

Length

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n

2 6 10 14

Age

Year 34

0 50 100 150

Length

2 6 10 14

Age

Year 67

0 50 100 150

Length

2 6 10 14

Age

Year 100

Vulnerability
Realized Selection
Retention

0 50 100 150

Length

Selection and Retention curves for simulation: 1

The plot shows that the retention curve for the fishery has shifted to the right,
towards larger and older fish, while the vulnerability of the fishing gear remains
the same.

Because we are assuming no discard mortality in this case, the realized selection
and retention curves are equivalent. This means that although fish of age/length
between the vulnerability and retention curves are selected by the fishery, they are
discarded with 100% survival and therefore are not removed from the population.

25.3.3 Discard Mortality

The assumption of 100% survival of discarded fish may be unrealistic in many
situations. Discard mortality can be specified by the Fdisc slot in the Stock or
OM object. The Fdisc slot represents the fraction of discarded fish that die, or
1 − survival. Here we assume that between 30 and 50% of discarded fish suffer
fishing mortality:
OM@Fdisc <- c(0.3, 0.5)
plotSelect(OM, sim=1)

Warning: 'plotSelect' is deprecated.
Use 'plot("Selectivity", Fleet, Stock' instead.
See help("Deprecated")

188 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

2 6 10 14

Age

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n Year 1

0 50 100 150

Length

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n

2 6 10 14

Age

Year 34

0 50 100 150

Length

2 6 10 14

Age

Year 67

0 50 100 150

Length

2 6 10 14

Age

Year 100

Vulnerability
Realized Selection
Retention

0 50 100 150

Length

Selection and Retention curves for simulation: 1

We can see now that the realized selection and the retention curves are different
for the age/size classes that are discarded by the fishery. The realized selection
curve (dashed red line) represents the actual selectivity of the fish removed from
the population.

The retention curve (dotted blue line) shows the age/size classes that are retained
by the fishery and appear in the total cathc, catch-at-age, and catch-at-length
fishery data.

The shaded gray area between these two curves represents that age/size classes
that are caught and killed by the fishery but are discarded and do not appear in
the catch statistics.

The gear vulnerability curve remains unchanged, and shows that some individuals
in the smaller age/size classes are caught and discarded alive back into the
population.

25.3.4 General Discarding

General discarding across all age or size classes can be included using the
discarding rate slot DR in the Fleet or OM object.

For example, here we assume that between 10 and 20% of all age/size classes
are discarded by the fishery:

25.3. SELECTION, RETENTION AND DISCARD MORTALITY 189

OM@DR <- c(0.1, 0.2)

Plotting the selectivity and retention curves shows that a proportion of all age
and size classes are now discarded, with the survival rate determined by the
Fdisc parameter:
plotSelect(OM, sim=1)

Warning: 'plotSelect' is deprecated.
Use 'plot("Selectivity", Fleet, Stock' instead.
See help("Deprecated")

2 6 10 14

Age

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n Year 1

0 50 100 150

Length

0.0

0.2

0.4

0.6

0.8

1.0

V
ul

ne
ra

bi
lty

/R
et

en
tio

n

2 6 10 14

Age

Year 34

0 50 100 150

Length

2 6 10 14

Age

Year 67

0 50 100 150

Length

2 6 10 14

Age

Year 100

Vulnerability
Realized Selection
Retention

0 50 100 150

Length

Selection and Retention curves for simulation: 1

190 CHAPTER 25. CUSTOMIZING THE OPERATING MODEL

Chapter 26

Developing Custom
Management Procedures

DLMtool was designed to be extensible in order to promote the development
of new Management Procedures. In this chapter we design a series of new
Management Procedures that include spatial controls and input controls in the
form of size limit restrictions.

If you wish, you can also add your newly developed MPs to the DLMtool package
so they are accessible to other uses. Of course you will be credited as the author.
Please contact us for details how to do this.

As we saw before, real data are stored in a class of objects Data.

The DLMtool MSE function generates simulated data and puts it in exactly the
same format as real data. This is highly desirable because it means that the
same MP code that is tested in the MSE can then be used to make management
recommendations.

If an MP is coded incorrectly it may catastrophically fail MSE testing and will
therefore be excluded from use in management.

26.1 The Anatomy of an MP

Let’s examine an existing output MP to identify the MP data requirements.
avail('Output')

[1] "AvC" "BK" "BK_CC" "BK_ML" "CC1" "CC2" "CC3" "CC4"
[9] "CC5" "CompSRA" "CompSRA4010" "CurC" "DAAC" "DBSRA" "DBSRA_40" "DBSRA4010"
[17] "DCAC" "DCAC_40" "DCAC_ML" "DCAC4010" "DCACs" "DD" "DD4010" "DepF"

191

http://www.datalimitedtoolkit.org/contact

192CHAPTER 26. DEVELOPING CUSTOM MANAGEMENT PROCEDURES

[25] "DynF" "Fadapt" "Fdem" "Fdem_CC" "Fdem_ML" "Fratio" "Fratio_CC" "Fratio_ML"
[33] "Fratio4010" "GB_CC" "GB_slope" "GB_target" "Gcontrol" "HDAAC" "ICI" "ICI2"
[41] "Iratio" "Islope1" "Islope2" "Islope3" "Islope4" "IT10" "IT5" "Itarget1"
[49] "Itarget2" "Itarget3" "Itarget4" "ITM" "L95target" "Lratio_BHI" "Lratio_BHI2" "Lratio_BHI3"
[57] "LstepCC1" "LstepCC2" "LstepCC3" "LstepCC4" "Ltarget1" "Ltarget2" "Ltarget3" "Ltarget4"
[65] "MCD" "MCD4010" "Rcontrol" "Rcontrol2" "SBT1" "SBT2" "SPmod" "SPMSY"
[73] "SPslope" "SPSRA" "SPSRA_ML" "YPR" "YPR_CC" "YPR_ML" "avgMP" "TCPUE"
[81] "THC"

Since we’ve seen it used as a default MP in lots of the examples above, lets learn
more about DCAC
?DCAC

We can even see all the code for this MP by simply typing the name of the MP
into the console (this is a fantastic advantage of using R - there is complete
transparency about package functions):
DCAC

function(x, Data, reps = 100, plot=FALSE) {
rundcac <- DCAC_(x, Data, reps, updateD=TRUE)
TAC <- TACfilter(rundcac$dcac)
##
if (plot) DCAC_plot(x, Data, dcac=rundcac$dcac, TAC, Bt_K=rundcac$Bt_K, yrs=1:length(Data@Year))
##
Rec <- new("Rec")
Rec@TAC <- TAC
Rec
}
<bytecode: 0x000001d484647608>
<environment: namespace:DLMtool>
attr(,"class")
[1] "MP"

“Crikey that looks complicated!” might be your first reaction. However this
output MP function is easily demystified.

Like all MPs it has four arguments: x, Data, reps and plot (the last argument
was added recently and is optional).

The argument x is the position in the Data object. When real data are stored in
a Data object, there is only one position - there is only one real data set.

However, in MSE we conduct many simulations and x refers to simulated data
from simulation number x. Any single parameters such as natural mortality rate
(Mort) are a vector (nsim long). See Data@Mort[x] in the DCAC code. Any
time series such as annual catches or relative abundance indices, are a matrix of
nsim rows and nyears columns.

A range of objects of class Data are available:

26.1. THE ANATOMY OF AN MP 193

avail('Data')

[1] "Atlantic_mackerel" "China_rockfish" "Cobia" "Example_datafile" "Gulf_blue_tilefish"
[6] "ourReefFish" "Red_snapper" "SimulatedData" "Simulation_1" "China_rockfish2"
[11] "Data" "Madeup" "Recs"

For simplicity lets use a Data object with just one simulation, Simulation_1
and rename it Data
Data <- Simulation_1

Since there is only one simulation in this data set (1 position) we can now see a
single value of natural mortality rate:
Data@Mort

[1] 0.2244735

And a matrix of catches with only 1 row:
Data@Cat

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12] [,13]
[1,] 4.275057 12.43761 14.63192 35.31725 28.69802 30.84651 24.14059 36.78335 29.27517 38.18088 59.30242 56.08995 37.96849
[,14] [,15] [,16] [,17] [,18] [,19] [,20] [,21] [,22] [,23] [,24] [,25] [,26]
[1,] 51.84985 60.76729 41.53713 39.31114 57.9673 57.2248 72.37596 80.69301 76.63558 59.37687 48.82643 50.38803 80.71158
[,27] [,28] [,29] [,30] [,31] [,32] [,33] [,34] [,35] [,36] [,37] [,38] [,39]
[1,] 53.35875 74.31955 48.83082 43.348 65.17864 49.94281 47.38492 45.23197 80.92438 51.91477 29.36491 43.44834 49.46923
[,40] [,41] [,42] [,43] [,44] [,45] [,46] [,47] [,48] [,49] [,50]
[1,] 50.33217 49.53639 39.28779 27.31767 38.97092 51.1054 37.34677 37.33128 24.24094 23.47756 21.08158

We could generate a single TAC recommendation from these data using DCAC
by specifying position 1 (there is only 1 simulation) and by setting reps=1 (we
want a single DCAC TAC recommendation)
DCAC(x=1,Data,reps=1)

TAC (median)
37.35232

If we wanted a stochastic estimate of the TAC we could increase the number of
reps:
hist(DCAC(x=1,Data,reps=1000)@TAC,xlab="TAC",ylab="Freq.",col="blue")

194CHAPTER 26. DEVELOPING CUSTOM MANAGEMENT PROCEDURES

Histogram of DCAC(x = 1, Data, reps = 1000)@TAC

TAC

F
re

q.

28 30 32 34 36 38 40 42

0
50

10
0

15
0

20
0

26.2 A Constant Catch MP

We’ve now got a better idea of the anatomy of an MP. It is a function that must
accept three arguments (we will ignore plot for now):

• x: a simulation number
• Data: an object of class Data
• reps: the MP can provide a sample of TACs reps long.

Let’s have a go at designing our own custom MP that can work with DLMtool.
We’re going to develop an MP that sets the TAC as the ‘3rd highest catch’.

We decide to call our function THC
THC<-function(x, Data, reps){

Find the position of third highest catch

THCpos<-order(Data@Cat[x,],decreasing=T)[3]

Make this the mean TAC recommendation

THCmu<-Data@Cat[x,THCpos]

A sample of the THC is taken according to a fixed CV of 10%

26.3. A MORE COMPLEX MP 195

TACs <- THCmu * exp(rnorm(reps, -0.1^2/2, 0.1)) # this is a lognormal distribution

Rec <- new("Rec") # create a 'Rec'object
Rec@TAC <- TACs # assign the TACs to the TAC slot
Rec # return the Rec object

}

To recap that’s just seven lines of code:
THC<-function(x, Data, reps){

THCpos<-order(Data@Cat[x,],decreasing=T)[3]
THCmu<-Data@Cat[x,THCpos]
Rec <- new("Rec")
Rec@TAC <- THCmu * exp(rnorm(reps, -0.1^2/2, 0.1))
Rec

}

We can quickly test our new MP for the example Data object
THC(x=1,Data,reps=10)@TAC

[1] 79.77229 84.19343 83.35881 77.35208 87.12422 83.23256 74.00345 95.07166 75.44146 80.00517

Now that we know it works, to make the function compatible with the DLMtool
package we have to assign it the class ‘MP’ so that DLMtool recognizes the
function as a management procedure
class(THC)<-"MP"

If we want to run the MSE in parallel we need to export the newly created
function to the cluster:
sfExport('THC')

26.3 A More Complex MP

The THCMP is simple and frankly not a great performer (depending on depletion,
life-history, adherence to TAC recommendations).

Let’s innovate and create a brand new MP that could suit a catch-data-only
stock like Indian Ocean Longtail tuna!

It may be possible to choose a single fleet and establish a catch rate that is
‘reasonable’ or ‘fairly productive’ relative to current catch rates. This could be
for example, 40% of the highest catch rate observed for this fleet or, for example,
150% of current cpue levels.

It is straightforward to design an MP that will aim for this target index level by
making adjustments to the TAC.

196CHAPTER 26. DEVELOPING CUSTOM MANAGEMENT PROCEDURES

We will call this MP TCPUE, short for target catch per unit effort:
TCPUE<-function(x,Data,reps){

mc<-0.05 # max change in TAC
frac<-0.3 # target index is 30% of max
nyears<-length(Data@Ind[x,]) # number of years of data

smoothI<-smooth.spline(Data@Ind[x,]) # smoothed index
targetI<-max(smoothI$y)*frac # target

currentI<-mean(Data@Ind[x,(nyears-2):nyears]) # current index

ratio<-currentI/targetI # ratio currentI/targetI

if(ratio < (1 - mc)) ratio <- 1 - mc # if currentI < targetI
if(ratio > (1 + mc)) ratio <- 1 + mc # if currentI > targetI

Rec <- new("Rec")
Rec@TAC <- Data@MPrec[x] * ratio * exp(rnorm(reps, -Data@CV_Ind[x]^2/2, Data@CV_Ind[x]))
Rec

}

The TCPUE function simply decreases the past TAC (stored in Data@MPrec) if
the index is lower than the target and increases the TAC if the index is higher
than the target.

All that is left is to make it compatible with DLMtool:
class(TCPUE)<-"MP"
sfExport("TCPUE")

26.4 Beyond the Catch Limit

All management procedures return an object of class ‘Rec’ that contains 13 slots:
slotNames("Rec")

[1] "TAC" "Effort" "Spatial" "Allocate" "LR5" "LFR" "HS" "Rmaxlen" "L5" "LFS"
[11] "Vmaxlen" "Fdisc" "Misc"

We’ve already seen the TAC slot in the previous exercise. The remaining slots
relate to various forms of input control:

• Effort (total allowable effort (TAE) relative to last historical year)
• Spatial - Fraction of each area that is open
• Allocate - Allocation of effort from closed areas to open areas

26.4. BEYOND THE CATCH LIMIT 197

• LR5 - Length at 5% retention
• LFR - Length at 100% retention
• HS - Upper slot limit
• Rmaxlen - Retention of the maximum length class
• L5 - Length at 5% selection (e.g a change in gear type)
• LFS - Length at 100% selection (e.g a change in gear type)
• Vmaxlen - Selectivity of the maximum length class
• Fdisc - Update the discard mortality if required
• Misc - An optional slot for storing additional information

The curE MP just keeps effort constant at current levels:
curE

function(x, Data, reps, plot=FALSE) {
current effort
rec <- new("Rec") # create recommendation object
rec@Effort <- 1 #* Data@MPeff[x]
if (plot) curE_plot(x, rec, Data)
rec
}
<bytecode: 0x000001d4843e9ca0>
<environment: namespace:DLMtool>
attr(,"class")
[1] "MP"

Note that only the Effort slot in the Rec object is populated in this case.

To highlight the differences among Input control MPs examine spatial control
MP MRreal that closes area 1 to fishing and reallocates fishing to the open area
2:
MRreal

function(x, Data, reps, plot=FALSE) {
A Marine reserve in area 1 with spatial reallocation of effort
##
rec <- new("Rec") # create recommendation object
rec@Allocate <- 1
rec@Spatial <- c(0, rep(1, Data@nareas-1))
##
if (plot) barplot(rec@Spatial, xlab="Area", ylab="Fraction Open", ylim=c(0,1),
names=1:Data@nareas)
return(rec)
}
<bytecode: 0x000001d4fbd54448>
<environment: namespace:DLMtool>
attr(,"class")
[1] "MP"

198CHAPTER 26. DEVELOPING CUSTOM MANAGEMENT PROCEDURES

In contrast MRnoreal does not reallocate fishing effort:
MRnoreal

function(x, Data, reps, plot=FALSE) {
A Marine reserve in area 1 with no spatial reallocation of effort
##
rec <- new("Rec") # create recommendation object
rec@Allocate <- 0
rec@Spatial <- c(0, rep(1, Data@nareas-1))
##
if (plot) barplot(rec@Spatial, xlab="Area", ylab="Fraction Open", ylim=c(0,1),
names=1:Data@nareas)
return(rec)
}
<bytecode: 0x000001d4fbd5c170>
<environment: namespace:DLMtool>
attr(,"class")
[1] "MP"

The MP matlenlim only specifies the parameters of length retention using an
estimate of length at 50% maturity (Stock@L50):
matlenlim

function(x, Data, reps, plot=FALSE) {
Knife-edge vulnerability at estimated length-at-maturity
rec <- new("Rec") # create recommendation object
rec@LFR <- Data@L50[x] # new length at full retention
rec@LR5 <- rec@LFR * 0.95 # new length at 5% retention
if(plot) size_lim_plot(x, Data, rec)
other slots aren't specified so remain unchanged
rec
}
<bytecode: 0x000001d4fc43cfe0>
<environment: namespace:DLMtool>
attr(,"class")
[1] "MP"

26.4.1 An Example Effort Control

Here we will copy and modify the MP we developed earlier to specify a new
version of the target catch per unit effort MP (TCPUE) that provides effort
recommendations:
TCPUE_e<-function(x,Data,reps){

mc<-0.05 # max change in TAC

26.4. BEYOND THE CATCH LIMIT 199

frac<-0.3 # target index is 30% of max
nyears<-length(Data@Ind[x,]) # number of years of data

smoothI<-smooth.spline(Data@Ind[x,]) # smoothed index
targetI<-max(smoothI$y)*frac # target

currentI<-mean(Data@Ind[x,(nyears-2):nyears]) # current index

ratio<-currentI/targetI # ratio currentI/targetI

if(ratio < (1 - mc)) ratio <- 1 - mc # if currentI < targetI
if(ratio > (1 + mc)) ratio <- 1 + mc # if currentI > targetI

rec <- new("Rec")
rec@Effort <- Data@MPeff[x] * ratio
rec

}

There have been surprisingly few changes to make TCPUE an input control MP
that sets total allowable effort.

1. We have had to use stored recommendations of effort in the Data@MPeff
slot, and

2. The final line of the MP is our input control recommendatation that only
modified the Effort.

That is all. Again, we need to assign our new function to class MP and export it
to the cluster:
class(TCPUE_e)<-"MP"
sfExport('TCPUE_e')

Let’s test the two MPs and see how they peform:
testMSE<-runMSE(testOM,MPs=c("TCPUE","TCPUE_e"), parallel = TRUE)

Exporting custom MPs in global environment

Running MSE in parallel on 10 processors

MSE completed

200CHAPTER 26. DEVELOPING CUSTOM MANAGEMENT PROCEDURES

NOAA_plot(testMSE)

0 40 80

0
20

40
60

80
12

0

Prob. of not overfishing (%)

Lo
ng

−
te

rm
 y

ie
ld

TCPUE

TCPUE_e

0 40 80

0
20

40
60

80
12

0

Prob. biomass above half BMSY (%)

P
ro

b.
 A

A
V

Y
 le

ss
 th

an
 1

5%

TCPUE

TCPUE_e

PNOF B50 LTY VY
TCPUE 50.3 60.4 52.9 89.6
TCPUE_e 58.4 82.0 90.0 2.1

Chapter 27

Custom Parameters

By default, DLMtool samples the operating model parameters from a uniform
distribution. Because the parameters are sampled independently, it is not possible
to generate correlated samples. However, the cpars slot in the OM object can be
used to pass custom samples into the MSE.

The addition of the cpars slot provides a lot of flexibility to the DLMtool, and
allows users full control of all parameters used in the model. For example, it is
possible to generate operating models directly from the output of common stock
assessment packages using functions in DLMtool (e.g SS2DLM for Stock Synthesis
3, and iSCAM2DLM for a iSCAM model - Note: these functions have now been
moved to MSEtool). These functions take the correlated parameter values from
the output of the stock assessment and provide them to DLMtool via the cpars
slot, resulting in an operating model that is conditioned on the stock assessment.

The cpars feature is being continually developed as more features are requested
for DLMtool.

27.1 Valid cpars names

The cpars slot requires a named list containing the custom parameter values.
You can see the valid names for cpars by typing:
head(validcpars())

Var. Dim. Desc. Type
1 R0 numeric vector length nsim Virgin recruitment Stock
2 M numeric vector length nsim Natural mortality Stock
3 Mexp numeric vector length nsim Lorenzen M-weight exponent Stock
4 Msd numeric vector length nsim Inter-annual variability in M Stock

201

202 CHAPTER 27. CUSTOM PARAMETERS

5 Mgrad numeric vector length nsim Gradient in M Stock
6 h numeric vector length nsim Steepness Stock

The custom parameters are divided into 5 different types: ‘Stock’, ‘Fleet’, ‘Obs’,
and ‘Imp’ corresponding to the OM components of the same names, and ‘internal’
for internal operating model parameters that over-ride or ignore the values in
the OM slots.

A warning message will alert you if variables appear in the named cpars list
that are not in validcpars(), and these will be ignored in the MSE.

27.2 Correlated samples

As the cpars feature is used to provide correlated samples to the MSE, it is
important that the same number of custom parameters are provided for each
variable. In most cases, this is simply a vector nsim long.

For example, if you wish to supply correlated samples of the von Bertalanffy
growth parameters, you would create three vectors of length nsim containing
the samples of Linf, K, and t0.

If the vectors are shorter than nsim they will simply be recycled. An error
message will alert you if the vectors are not the same length.

As a demonstration, we will use the ForceCor function to generate correlated
samples of M, K, L50, and Linf and examine the cpars slot in the resulting OM
object:
OM <- ForceCor(DLMtool::testOM)

Warning: Life-history correlations are now calculated using data from FishBase.
Consider using `LH2OM` instead.

27.2. CORRELATED SAMPLES 203

Natural mortality rate (M)

0.34 0.38 0.42 0.46

sim[, j]

si
m

[,
i]

0.17 0.19 0.21

0.
36

sim[, j]

si
m

[,
i]

82 84 86 88 90

0.
36

sim[, j]

si
m

[,
i]

120 125 130 135

0.
36

sim[, j]

0.36 0.40 0.44

0.
17

Growth rate (K)

F
re

qu
en

cy

0.16 0.18 0.20 0.22

sim[, j]

si
m

[,
i]

82 84 86 88 90

0.
17

sim[, j]

si
m

[,
i]

120 125 130 135

0.
17

sim[, j]

0.36 0.40 0.44

82
90

sim[, j]

si
m

[,
i]

0.17 0.19 0.21

82
90

Length at 50% maturity (L50)
F

re
qu

en
cy

80 84 88 92

sim[, j]

si
m

[,
i]

120 125 130 135

82
90

0.36 0.40 0.44

12
0

13
5

si
m

[,
i]

0.17 0.19 0.21

12
0

13
5

si
m

[,
i]

82 84 86 88 90

12
0

13
5

Maximum length (Linf)

F
re

qu
en

cy
120 125 130 135

Sampled parameters and cross−correlations

str(OM@cpars)

List of 4
$ M : num [1:48] 0.382 0.39 0.396 0.353 0.4 ...
$ K : num [1:48] 0.174 0.176 0.187 0.163 0.196 ...
$ L50 : num [1:48] 84.8 86.6 88.9 88.3 88 ...
$ Linf: num [1:48] 132 132 130 134 128 ...

You can see that the OM@cpars slot is a list of length 4 and contains named
vectors with 48 correlated samples of the four parameters.

Because the OM@cpars slot contains these values, the M, K, L50, and Linf values
in the OM, e.g. OM@M will be ignored.

Any additional custom parameters can be added to cpars using this same
approach. For example, to provide custom (in this case uncorrelated) samples of
t0 :
OM@cpars$t0 <- runif(OM@cpars, -1, 0)
str(OM@cpars)

List of 5
$ M : num [1:48] 0.382 0.39 0.396 0.353 0.4 ...
$ K : num [1:48] 0.174 0.176 0.187 0.163 0.196 ...
$ L50 : num [1:48] 84.8 86.6 88.9 88.3 88 ...
$ Linf: num [1:48] 132 132 130 134 128 ...
$ t0 : num [1:4] -0.768 -0.759 -0.203 -0.168

204 CHAPTER 27. CUSTOM PARAMETERS

27.3 Custom internal parameters

It is also possible to supply custom generated time-varing values or other values
to internal parameters using the cpars slot. For example, time-varying natural
mortality or selectivity patterns. These are referred to as internal custom
parameters.

A list of valid internal cpars can be found by using the validcpars function.
Here, for presentation purposes, we print just the first two columns:
val_int <- validcpars('internal')
val_int[,c(1,2)]

Var. Dim.
1 Cbias numeric vector length nsim
2 CAL_bins numeric vector
3 CAL_binsmid numeric vector length(CAL_bins)-1
4 L95 numeric vector length nsim
5 Perr_y numeric matrix dim = c(nsim, maxage+proyears+nyears-1)
6 M_at_Length numeric matrix dim = c(n.lengths, 3)
7 Asize numeric matrix dim = c(nsim, narea)
8 Karray numeric matrix dim = c(nsim, nyears+proyears)
9 Linfarray numeric matrix dim = c(nsim, nyears+proyears)
10 Marray numeric matrix dim = c(nsim, nyears+proyears)
11 Krand numeric matrix dim = c(nsim, nyears+proyears)
12 Linfrand numeric matrix dim = c(nsim, nyears+proyears)
13 Mrand numeric matrix dim = c(nsim, nyears+proyears)
14 ageM numeric matrix dim = c(nsim, nyears+proyears)
15 age95 numeric matrix dim = c(nsim, nyears+proyears)
16 M_ageArray numeric array dim = c(nsim, maxage, nyears+proyears)
17 Mat_age numeric array dim = c(nsim, maxage, nyears+proyears)
18 LatASD numeric array dim = c(nsim, maxage, nyears+proyears)
19 Wt_age numeric array dim = c(nsim, maxage, nyears+proyears)
20 Len_age numeric array dim = c(nsim, maxage, nyears+proyears)
21 mov numeric array dim = c(nsim, maxage, narea, narea) OR dim = c(nsim, maxage, narea, narea, nyears+proyears)
22 initD numeric vector length nsim
23 binWidth numeric value of length 1
24 Find numeric matrix dim = c(nsim, nyears)
25 dFfinal numeric vector length nsim
26 V numeric array dim = c(nsim, maxage, nyears+proyears)
27 retA numeric array dim = c(nsim, maxage, nyears+proyears)
28 retL numeric array dim = c(nsim, nCALbins, nyears+proyears)
29 lenMbias numeric vector length nsim
30 Mbias numeric vector length nsim
31 Kbias numeric vector length nsim
32 t0bias numeric vector length nsim

27.3. CUSTOM INTERNAL PARAMETERS 205

33 Linfbias numeric vector length nsim
34 LFCbias numeric vector length nsim
35 FMSYbias numeric vector length nsim
36 FMSY_Mbias numeric vector length nsim
37 BMSY_B0bias numeric vector length nsim
38 Irefbias numeric vector length nsim
39 Brefbias numeric vector length nsim
40 Crefbias numeric vector length nsim
41 Dbias numeric vector length nsim
42 hbias numeric vector length nsim
43 hsim numeric vector length nsim
44 Data Object of class Data
45 CostCurr numeric vector length nsim
46 RevCurr numeric vector length nsim
47 Response numeric vector length nsim
48 CostInc numeric vector length nsim
49 RevInc numeric vector length nsim
50 LatentEff numeric vector length nsim
51 AddIerr array dim nsim, n.ind, nyears+proyears
52 AddIbeta matrix nrow=nsim and ncol=n.ind

We can see that there are 52 valid internal cpars. The internal cpars are
parameters that are derived from one or more of the OM slots.

For example, M_ageArray is an internal array that describes the natural mortality
rate at age for each simulation and year. Typically, this array is derived from the
M, M2, Mexp, Mgrad and Msd slots in the Stock object. Using the cpars feature
we can override these values in the OM and provide our own values for M for each
simulation, age, and year.

Information on the M_ageArray variable in cpars can be found in the output of
the validcpars function:
val_int[15,]

Var. Dim. Desc. Type
15 age95 numeric matrix dim = c(nsim, nyears+proyears) Age at 95% maturity by simulation and year internal

To generate our own values of the M-at-age array we would populate
OM@cpars$M_ageArray with an array with dimensions OM@nsim, OM@maxage,
OM@nyears+OM@proyears.

The cpars feature is very powerful but also somewhat complicated, especially if
you are using internal custom parameters. For example, by default DLMtool uses
the OM@L50_95 slot (the increment between length at 50% maturity (OM@L50)
and length at 95% maturity (L95)) to calculate the internal parameter L95. This
is neccessary to ensure that L95 is always greater than L50. Using internal
parameters in cpars it is possible to pass values to L95 directly, however now it
is up to you to make sure that the L95 values are greater than the corresponding

206 CHAPTER 27. CUSTOM PARAMETERS

L50 values, otherwise you end up with a species where fraction mature decreases
with age/size!
OM <- testOM
OM@cpars$L95 <- rep(80, OM@nsim)
temp <- runMSE(OM, Hist=TRUE)

Loading operating model

valid custom parameters (OM@cpars) found:
L95

Optimizing for user-specified movement

Optimizing for user-specified depletion in last historical year

7 simulations have final biomass that is not close to sampled depletion

Re-sampling depletion, recruitment error, and fishing effort

Calculating historical stock and fishing dynamics

Calculating MSY reference points for each year

Calculating B-low reference points

Calculating reference yield - best fixed F strategy

Simulating observed data

Returning historical simulations
data.frame(L50=temp@SampPars$L50, L95=temp@SampPars$L95, diff=temp@SampPars$L95 - temp@SampPars$L50)

L50 L95 diff
1 89.29632 80 -9.296324
2 85.94840 80 -5.948397
3 83.02974 80 -3.029737
4 82.72569 80 -2.725685
5 87.00959 80 -7.009591
6 82.88771 80 -2.887705
7 90.17793 80 -10.177931
8 83.81742 80 -3.817423
9 87.81777 80 -7.817765
10 84.97352 80 -4.973519
11 88.37993 80 -8.379927
12 87.54484 80 -7.544837
13 89.68775 80 -9.687752
14 90.60570 80 -10.605700
15 90.11753 80 -10.117530
16 89.93550 80 -9.935500
17 83.79199 80 -3.791989
18 82.63972 80 -2.639718

27.3. CUSTOM INTERNAL PARAMETERS 207

19 85.90402 80 -5.904019
20 89.30135 80 -9.301353
21 86.76698 80 -6.766979
22 83.99262 80 -3.992624
23 88.38363 80 -8.383626
24 84.21836 80 -4.218363
25 81.24307 80 -1.243072
26 81.36054 80 -1.360544
27 83.45353 80 -3.453532
28 86.99403 80 -6.994028
29 83.24743 80 -3.247426
30 87.87676 80 -7.876755
31 82.32874 80 -2.328738
32 86.58952 80 -6.589517
33 90.09740 80 -10.097400
34 84.91566 80 -4.915659
35 83.48538 80 -3.485384
36 90.99788 80 -10.997882
37 85.78385 80 -5.783854
38 90.74749 80 -10.747493
39 83.28700 80 -3.286995
40 84.65751 80 -4.657509
41 88.04526 80 -8.045262
42 82.42479 80 -2.424794
43 84.60668 80 -4.606678
44 84.31737 80 -4.317373
45 90.17543 80 -10.175434
46 89.00868 80 -9.008677
47 85.91241 80 -5.912413
48 86.02250 80 -6.022501
plot(1:OM@maxage, temp@AtAge$Maturity[1,,1], type="l",

xlab="Age", ylab="Maturity")

208 CHAPTER 27. CUSTOM PARAMETERS

2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Age

M
at

ur
ity

We have tried to include checks to ensure the model is simulating credible
population dynamics, but as this somewhat contrived example shows, care is
needed when using OM@cpars to specify internal parameters. We recommend
first running the model with Hist=TRUE as in the above example and examining
the generated values to ensure the parameters you have added in OM@cpars are
being used as expected.

If you find that this is a feature you wish to use but are unclear how to do it,
bug us with an email!

Chapter 28

Subsetting the MSE Object

The plotting functions demonstrated above calculate the probabilities and show
the trade-offs for all the simulations in the MSE. However, sometimes it is
interesting to examine the results of individual Management Procedures or
simulations.

Many of the plotting functions have the optional arguments MPs and sims which
allow you to specify which particular Management Procedures or simulations to
include in the plots.

You can also manually subset the MSE object using the Sub function.

28.1 Subsetting by Performance

For example, we may wish to include only Management Procedures that have
greater than 70% probability that the biomass is above 0.5BMSY :

We can do this using a combination of the summary function and the Sub function:
stats <- summary(BSharkMSE) # save summary object to `stats`

Calculating Performance Metrics

Performance.Metrics
1 Probability of not overfishing (F<FMSY) Prob. F < FMSY (Years 1 - 50)
2 Spawning Biomass relative to SBMSY Prob. SB > 0.5 SBMSY (Years 1 - 50)
3 Average Annual Variability in Yield (Years 1-50) Prob. AAVY < 20% (Years 1-50)
4 Average Yield relative to Reference Yield (Years 41-50) Prob. Yield > 0.5 Ref. Yield (Years 41-50)
##
##
Performance Statistics:

209

210 CHAPTER 28. SUBSETTING THE MSE OBJECT

MP PNOF P50 AAVY LTY
1 Fratio 0.49 0.60 0.62 0.50
2 DCAC 0.57 0.71 0.84 0.62
3 Fdem 0.54 0.61 0.70 0.45
4 DD 0.50 0.70 0.80 0.71
5 matlenlim 0.75 0.88 0.33 0.85
accept <- which(stats$P50 > 0.70) # index of methods that pass the criteria
MPs <- stats[accept,"MP"] # the acceptable MPs

subMSE <- Sub(BSharkMSE, MPs=MPs)

Here we can see that the DCAC, matlenlim methods (2 of the 5) met our specified
criteria. We used the Sub function to create a new MSE object that only includes
these Management Procedures.

We can than proceed to continue our analysis on the subMSE object, e.g.:
Tplot(subMSE)

DCAC

matlenlim

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. F < FMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

DCAC

matlenlim

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

DCAC

matlenlim

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.5 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

DCAC

matlenlim

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Prob. SB > 0.1 SBMSY (Years 1 − 50)

P
ro

b.
 Y

ie
ld

 >
 0

.5
 R

ef
. Y

ie
ld

 (
Ye

ar
s

41
−

50
)

MP Type

Input
Output

MP PNOF LTY P100 P50 P10 Satisificed
1 DCAC 0.57 0.62 0.56 0.71 0.79 TRUE
2 matlenlim 0.75 0.85 0.69 0.88 0.99 TRUE

28.2. SUBSETTING BY OPERATING MODEL PARAMETERS 211

28.2 Subsetting by Operating Model Parame-
ters

We can also subset the MSE object by simulation. For example, we may be
interested to look at how the methods perform under different assumptions
about the natural mortality rate (M).

In this MSE M ranged from 0.15 to 0.25. Here we identify the simulations where
M was below and above the median rate:
below <- BSharkMSE@OM$M < median(BSharkMSE@OM$M)
above <- BSharkMSE@OM$M > median(BSharkMSE@OM$M)

We can then use the Sub function to create two MSE objects, one only including
simulations with lower values of M, and the other with simulations where M was
above the median value:
belowMSE <- Sub(BSharkMSE, sims=below)
aboveMSE <- Sub(BSharkMSE, sims=above)

You can see that the original MSE object has been split into two objects, each
with half of the simulations:
belowMSE@nsim

[1] 100
aboveMSE@nsim

[1] 100

We could then continue our analysis on each subset MSE and determine if the
natural mortality rate is critical in determining which Management Procedure
we would choose as the best option for managing the fishery.

212 CHAPTER 28. SUBSETTING THE MSE OBJECT

Chapter 29

Custom Performance
Metrics

PM methods were introduced in the Performance Metrics Methods chapter.
DLMtool includes several built-in PM methods:
avail("PM")

[1] "AAVE" "AAVY" "LTY" "P10" "P100" "P50" "PNOF" "STY" "Yield" "MeanB" "MeanF"

We saw in Customizing the PM Functions that it is straightforward to modify the
years that the performance statistics are calculated over using the Yrs argument,
and the reference level using the Ref argument. In this section we describe the
PM functions in more detail for advanced users who wish to develop their own PM
methods.

We will demonstrate this using the P50 performance metric function as an
example.

29.1 Necessity of Complexity

While at first glance the PM functions may appear overly complicated, they are
actually quite straightforward. This level of complexity is required because
functions of class PM not only return the required performance statistic, but also
relevant contextual information.

Imagine we want to develop a function to calculate the probability that B >
0.5BMSY, which we will define as not overfished. We could do something like
this:

213

214 CHAPTER 29. CUSTOM PERFORMANCE METRICS

P_Noverfished <- function(MSEobj) {
round(apply(MSEobj@B_BMSY >0.5, 2, mean),2)

}

We could increase the flexibility of the function by adding additional arguments
to specify the years to calculate the statistic over, but for this demonstration we
will keep it simple.

Applying our function to calculate the performance statistic is straightforward:
MSEobj <- runMSE(silent=TRUE) # run an exampe MSE
p_noverfish <- P_Noverfished(MSEobj) # calculate and store our performance statistic
p_noverfish

[1] 0.80 0.76 0.99 0.87 0.99 0.92

The p_noverfish variable now contains our performance statistic, which we
could use to plot or tabulate results. However, the numeric vector returned by
P_Noverfished includes no information on what these numbers represent. This
makes it difficult to include the results in generic plotting or summary functions.
Furthermore, it is easy to imagine that with several similiar performance metric
functions, it will be easy to loose track of the meaning of the results unless an
elaborate variable naming system is used.

The PM functions have been designed to avoid this problem by returning all
information related to the calculation of the performance statistic. Here we
calculate the same performance metric using the relevant PM function:
p1 <- P50(MSEobj)

Note that we don’t need to use a descriptive variable name; the p1 variable
includes relevant information on the performance metric. Note also that PM
function are most often passed directly to plotting or table functions instead of
being called and stored directly.

The p1 variable is an object of class PMobj and includes the following slots:
slotNames(p1)

[1] "Name" "Caption" "Stat" "Ref" "Prob" "Mean" "MPs"

The first two slots contain a descriptive name of the performance statistic, and
a caption that can be used in plots or summary tables:
p1@Name

[1] "Spawning Biomass relative to SBMSY"
p1@Caption

[1] "Prob. SB > 0.5 SBMSY (Years 1 - 50)"

29.2. PM METHODS IN DETAIL 215

The last two slots contain the results of performance statistic and the names of
the MPs:
p1@Mean

[1] 0.7950000 0.7575000 0.9929167 0.8737500 0.9933333 0.9191667
p1@MPs

[1] "AvC" "DCAC" "FMSYref" "curE" "matlenlim" "MRreal"

We will look at the other 3 slots in detail in the next section. The main point
here is to demonstrate the using functions of class PM that return objects of class
PMobj has the advantage that the function output is completely self-contained
and can be used elsewhere without requiring any additional information.

29.2 PM Methods in Detail

Let’s go through the P50 function in detail to see how it works:
P50

function (MSEobj = NULL, Ref = 0.5, Yrs = NULL)
{
Yrs <- ChkYrs(Yrs, MSEobj)
PMobj <- new("PMobj")
PMobj@Name <- "Spawning Biomass relative to SBMSY"
if (Ref != 1) {
PMobj@Caption <- paste0("Prob. SB > ", Ref, " SBMSY (Years ",
Yrs[1], " - ", Yrs[2], ")")
}
else {
PMobj@Caption <- paste0("Prob. SB > SBMSY (Years ", Yrs[1],
" - ", Yrs[2], ")")
}
PMobj@Ref <- Ref
PMobj@Stat <- MSEobj@B_BMSY[, , Yrs[1]:Yrs[2]]
PMobj@Prob <- calcProb(PMobj@Stat > PMobj@Ref, MSEobj)
PMobj@Mean <- calcMean(PMobj@Prob)
PMobj@MPs <- MSEobj@MPs
PMobj
}
<bytecode: 0x000001d4fb008468>
<environment: namespace:DLMtool>
attr(,"class")
[1] "PM"

Firstly, functions of class PM must have three arguments: MSEobj, Ref, and Yrs:

216 CHAPTER 29. CUSTOM PERFORMANCE METRICS

args(P50)

function (MSEobj = NULL, Ref = 0.5, Yrs = NULL)
NULL

1. The first argument MSEobj is obvious, an object of class MSE to calculate
the performance statistic.

2. The second argument Ref must have a default value. This is used as
reference for the performance statistic, and will be demonstrated shortly.

3. The third argument Yrs can have a default value of NULL or specify a
numeric vector of length 2 with the first and last years to calculate the
performance statistic, or a numeric vector of length 1 in which case if it
is positive it is the first Yrs and if negative the last Yrs of the projection
period.

The first line of a PM function must be Yrs <- ChkYrs(Yrs, MSEobj). This
line updates the Yrs variable and makes sure that the specified year indices are
valid. For example:
ChkYrs(NULL, MSEobj) # returns all projection years
ChkYrs(c(1,10), MSEobj) # returns first 10 years
ChkYrs(c(60,80), MSEobj) # returns message and last 20 years
ChkYrs(5, MSEobj) # first 5 years
ChkYrs(-5, MSEobj) # last 5 years
ChkYrs(c(50,10), MSEobj) # returns an error

When the default value for Yrs is NULL, the Yrs variable is updated to include
all projection years:
Yrs <- ChkYrs(NULL, MSEobj)
Yrs

[1] 1 50

Next we create a new object of class PMobj, and populate the Name slot with a
short but descriptive name:
PMobj <- new("PMobj")
PMobj@Name <- "Spawning Biomass relative to SBMSY"

The next line populates the Caption slot with a brief caption including the
years over which the performance statistic is calculated. The if statement is not
crucial, but avoids the redundant SB > 1 SBMSY in cases where Ref=1.

Next we store the value of the Ref argument in the PMobj@Ref slot so that
information is contained in the function output.
PMobj@Ref <- Ref

The Stat slot is an array that stores the variable which we wish to calculate

29.3. CREATING EXAMPLE PMS AND PLOT 217

the performance statistic; an output from the runMSE function with dimensions
MSE@nsim, MSE@nMPs, and MSE@proyears (or fewer if the argument Yrs !=
NULL).

In this case we want to calculate a performance statistic related to the biomass
relative to BMSY, and so we assign the Stat slot as follows:
PMobj@Stat <- MSEobj@B_BMSY[, , Yrs[1]:Yrs[2]]

Note that we are including all simulations and MPs and indexing the years
specified in Yrs.

Next we use the calcProb function to calculate the mean of PMobj@Stat >
PMobj@Ref over the years dimension. This results in a matrix with dimensions
MSE@nsim, MSE@nMPs:
PMobj@Prob <- calcProb(PMobj@Stat > PMobj@Ref, MSEobj)

Note that in order to calculate a probability the argument to the calcProb
function must be a logical array, which is achieved using the Ref slot.

Also note that in this case PMobj@Stat > PMobj@Ref is equivalent to
MSEobj@B_BMSY[, , Yrs[1]:Yrs[2]] > 0.5. The PM functions have been de-
signed this way so that in most cases the PMobj@Prob <- calcProb(PMobj@Stat
> PMobj@Ref) line is identical in all PM functions and does not need to be
modified. The exception to this is if we don’t want to calculate a probability
but want the actual mean values of PMobj@Stat, demonstrated in the example
below.

In the next line we calculate the mean of PMobj@Prob over simulations using the
calcMean function:
PMobj@Mean <- calcMean(PMobj@Prob)

Similiar to the previous line, this line is identical in all PM functions and can be
simply copy/pasted from other PM functions without being modified. The Mean
slot is a numeric vector of length MSEobj@nMPs with the overall performance
statistic, in this case the probability of B > 0.5BMSY across all simulations and
years.

Finally, we store the names of the MPs and return the PMobj.

29.3 Creating Example PMs and Plot

As an example, we will create another version of DFO_plot using some custom
PM functions and a customized version of TradePlot.

First we create the plot using DFO_plot:

218 CHAPTER 29. CUSTOM PERFORMANCE METRICS

DFO_plot(MSEobj)

C
ritical

C
autious

H
ealthy

0 0.5 1 1.5 2

0
0.

5
1

1.
5

2

AvC

DCAC

FMSYref
curE

matlenlim

MRreal

B/BMSY

F
/F

M
S

Y

From the help documentation (?DFO_plot) we can see that this function plots
mean biomass relative to BMSY and fishing mortality rate relative to FMSY
over the final 5 years of the projection.

First we’ll develop a PM function to calculate the mean B/BMSY for the last 5
years of the projection period. Notice that this is very similiar to P50 described
above, with the modification of the Caption and the Prob slots, and the Yrs
argument. We are calculating a mean here instead of a probability and are not
using the Ref argument:
MeanB <- function(MSEobj = NULL, Ref = 1, Yrs = -5) {

Yrs <- ChkYrs(Yrs, MSEobj)
PMobj <- new("PMobj")
PMobj@Name <- "Spawning Biomass relative to SBMSY"
PMobj@Caption <- paste0("Mean SB/SBMSY (Years ", Yrs[1], " - ", Yrs[2], ")")

PMobj@Ref <- Ref
PMobj@Stat <- MSEobj@B_BMSY[, , Yrs[1]:Yrs[2]]
PMobj@Prob <- calcProb(PMobj@Stat, MSEobj)
PMobj@Mean <- calcMean(PMobj@Prob)
PMobj@MPs <- MSEobj@MPs
PMobj

}

29.3. CREATING EXAMPLE PMS AND PLOT 219

We develop a PM function to calculate average F/FMSY in a similar way:
MeanF <- function(MSEobj = NULL, Ref = 1, Yrs = -5) {

Yrs <- ChkYrs(Yrs, MSEobj)
PMobj <- new("PMobj")
PMobj@Name <- "Fishing Mortality relative to FMSY"
PMobj@Caption <- paste0("Mean F/FMSY (Years ", Yrs[1], " - ", Yrs[2], ")")

PMobj@Ref <- Ref
PMobj@Stat <- MSEobj@F_FMSY[, , Yrs[1]:Yrs[2]]
PMobj@Prob <- calcProb(PMobj@Stat, MSEobj)
PMobj@Mean <- calcMean(PMobj@Prob)
PMobj@MPs <- MSEobj@MPs
PMobj

}

Similar to developing custom MPs we need to tell R that these new functions
are PM methods:
class(MeanB) <- "PM"
class(MeanF) <- "PM"

Now we can test our performance metric functions:
data.frame(MP=MeanB(MSEobj)@MPs, B_BMSY=MeanB(MSEobj)@Mean, F_FMSY=MeanF(MSEobj)@Mean)

MP B_BMSY F_FMSY
1 AvC 1.6534967 1.1436909
2 DCAC 0.7812216 1.9835498
3 FMSYref 1.0454687 0.9785792
4 curE 1.5807679 0.8960045
5 matlenlim 2.3956111 0.2200407
6 MRreal 1.6680184 0.8885163

How do these results compare to what is shown in DFO_plot?

We could also use the summary function with our new PM functions, but note
that these results are not probabilities:
summary(MSEobj, 'MeanB', 'MeanF')

Calculating Performance Metrics

Performance.Metrics
1 Spawning Biomass relative to SBMSY Mean SB/SBMSY (Years 46 - 50)
2 Fishing Mortality relative to FMSY Mean F/FMSY (Years 46 - 50)
##
##
Performance Statistics:
MP MeanB MeanF

220 CHAPTER 29. CUSTOM PERFORMANCE METRICS

1 AvC 1.70 1.10
2 DCAC 0.78 2.00
3 FMSYref 1.00 0.98
4 curE 1.60 0.90
5 matlenlim 2.40 0.22
6 MRreal 1.70 0.89

Finally, we will develop a customized plotting function to reproduce the image
produced by DFO_plot.

We can produced something fairly similar quite quickly using the TradePlot
function:
TradePlot(MSEobj, 'MeanB', 'MeanF', Lims=c(0,0))

AvC

DCAC

FMSYref curE

matlenlim

MRreal

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
Mean SB/SBMSY (Years 46 − 50)

M
ea

n
F

/F
M

S
Y

 (
Ye

ar
s

46
 −

 5
0)

MP Type

Input
Output
Reference

MP MeanB MeanF Satisificed
1 AvC 1.70 1.10 TRUE
2 DCAC 0.78 2.00 TRUE
3 FMSYref 1.00 0.98 TRUE
4 curE 1.60 0.90 TRUE
5 matlenlim 2.40 0.22 TRUE
6 MRreal 1.70 0.89 TRUE

Adding the shaded polygons and text requires a little more tweaking and some
knowledge of the ggplot2 package. We will wrap up our code in a function:
NewPlot <- function(MSEobj) {

create but don't show the plot

29.3. CREATING EXAMPLE PMS AND PLOT 221

P <- TradePlot(MSEobj, 'MeanB', 'MeanF', Lims=c(0,0), Show=FALSE)
P1 <- P$Plots[[1]] # the ggplot objects are returned as a list

add the shaded regions and the text
P1 + ggplot2::geom_rect(ggplot2::aes(xmin=c(0,0,0), xmax=c(0.4, 0.8, Inf),

ymin=c(0,0,1), ymax=rep(Inf,3)),
alpha=c(0.8, 0.6, 0.4), fill="grey86") +

ggplot2::annotate(geom = "text", x = c(0.25, 0.6, 1.25), y = Inf,
label = c("Critical", "Cautious", "Healthy") ,
color = c('white', 'darkgray', 'darkgray'),
size=5, angle = 270, hjust=-0.25)

}

NewPlot(MSEobj)

AvC

DCAC

FMSYref
curE

matlenlim

MRreal

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
Mean SB/SBMSY (Years 46 − 50)

M
ea

n
F

/F
M

S
Y

 (
Ye

ar
s

46
 −

 5
0)

MP Type

Input
Output
Reference

MP MeanB MeanF Satisificed
1 AvC 1.70 1.10 TRUE
2 DCAC 0.78 2.00 TRUE
3 FMSYref 1.00 0.98 TRUE
4 curE 1.60 0.90 TRUE
5 matlenlim 2.40 0.22 TRUE
6 MRreal 1.70 0.89 TRUE

222 CHAPTER 29. CUSTOM PERFORMANCE METRICS

AvC

DCAC

FMSYref
curE

matlenlim

MRreal

C
ritical

C
autious

H
ealthy

0.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0 2.5
Mean SB/SBMSY (Years 46 − 50)

M
ea

n
F

/F
M

S
Y

 (
Ye

ar
s

46
 −

 5
0)

MP Type

Input
Output
Reference

Appendix A

Acknowledgements

Thanks to the many people who have alerted us to issues or bugs, provided
suggestions for improvements, or asked the tricky, but important, questions that
have helped us continue to develop the DLMtool.

This User Guide has been developed with the bookdown package.

Developers:

• Thomas Carruthers, University of British Columbia (UBC) Institute for
the Oceans and Fisheries

• Adrian Hordyk, University of British Columbia (UBC) Institute for the
Oceans and Fisheries

Collaborators:

• Doug Butterworth, University of Cape Town
• Campbell Davies, Commonwealth Scientific and Industrial Research Or-

ganisation (CSIRO)
• Helena Geromont, University of Cape Town
• William Harford, National Oceanic and Atmospheric Administration

(NOAA)
• Richard Hillary, Commonwealth Scientific and Industrial Research Organi-

sation (CSIRO)
• Quang Huynh, Virginia Institute of Marine Science (VIMS)
• Laurie Kell, International Commission for the Conservation of Atlantic

Tuna (ICCAT)
• Toshihide Kitakado, University of Tokyo
• Skyler Sagarese, University of Miami Rosenstiel School of Marine and

Atmospheric Science (RSMAS)
• Liz Brooks, National Oceanic and Atmospheric Administration (NOAA)
• Robyn Forrest, Canadian Department of Fisheries and Oceans
• Chris Grandin, Canadian Department of Fisheries and Oceans

223

https://bookdown.org/

224 APPENDIX A. ACKNOWLEDGEMENTS

• California Department of Fish and Wildlife

Funders:

• David & Lucille Packard Foundation
• Gordon & Betty Moore Foundation
• Kingfisher Foundation
• Natural Resources Defense Council
• Resources Legacy Fund
• Fisheries and Oceans, Canada (DFO)
• United Nations Food & Agriculture Organization (FAO)

Appendix B

References

Beverton, R. J. H., & Holt, S. J. (1957). On the dynamics of exploited fish popu-
lations. Fishery Investigation Series 2, United Kingdom Ministry of Agriculture
and Fisheries, (Vol. 19). Book, London, United Kingdom.

Butterworth, D. S. (2007). Why a management procedure approach? Some
positives and negatives. ICES Journal of Marine Science: Journal Du Conseil,
64(1995), 613–617.

Costello, C., Ovando, D., Hilborn, R., Gaines, S. D., Deschenes, O., & Lester,
S. E. (2012). Status and solutions for the world’s unassessed fisheries. Science,
338, 517–520.

Lorenzen, K. (1996), The relationship between body weight and natural mortality
in juvenile and adult fish: a comparison of natural ecosystems and aquaculture.
Journal of Fish Biology, 49: 627–642

Newman, D., Berkson, J., & Suatoni, L. (2015). Current methods for setting
catch limits for data-limited fish stocks in the United States. Fisheries Research,
164, 86–93.

Punt, A. E. (2015). Strategic management decision-making in a complex world:
quantifying, understanding, and using trade-offs. ICES Journal of Marine
Science, (fsv193), 12.

Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. A., & Haddon,
M. (2014). Management strategy evaluation: best practices. Fish and Fisheries.

Restrepo, V., Thompson, G. G., Mace, P., Gabriel, W., Low, L., MacCall,
A., Methot, R.D., Powers, J.E., Taylor, B., Wade, P.R., & Witzig, J. (1998).
Guidance on the use of precautionary approaches to implementing National
Standard 1 of the Magnuson-Stevens Fishery Conservation and Management.
NOAA Technical Memorandum.

225

226 APPENDIX B. REFERENCES

Walters, C. J., & Martell, S. J. D. (2004). Fisheries ecology and management.
Book, Princeton, USA: Princeton University Press.

Appendix C

Getting Help

C.1 First Time Working With R?

This section is designed for first-time users of the DLMtool, or users who may
not have a lot of experience with R.

You should be able to skip this section if you are familiar with R and RStudio,
installing new R packages, and entering R commands into the R console.

To get started with the DLMtool you will need at least two things:

1. A current version of the R software installed on your machine.
2. The latest version of the DLMtool package.

The R Software

The R software can be freely downloaded from the CRAN website and is available
for all operating systems. Updated versions of R are released frequently, and it
is recommended that you have the latest version installed.

If you are using Windows OS, you can uses the installr package and the
updateR() function to update and install the latest version. Alternatively, head
to the CRAN website to download the latest version of R.

RStudio

RStudio is a freely available integrated development environment (IDE) for R.
It is not essential that you use RStudio, but it can make things a lot easier,
especially if you are new to R. This User Guide assumes that you are using
RStudio to operate the DLMtool.

227

https://cran.r-project.org/
https://cran.r-project.org/
https://www.rstudio.com/products/RStudio/

228 APPENDIX C. GETTING HELP

It is important to be aware that RStudio and R are two different pieces of
software that must be installed separately. We recommend installing the R
software before downloading and installing RStudio.

C.2 Installing the DLMtool Package

If this is the first time you are using DLMtool, you will need to install the
DLMtool package from CRAN.

Installing DLMtool Using R Console

This can be done by running the command:
install.packages("DLMtool")

A prompt may appear asking you to select a CRAN mirror. It is best to pick
the mirror that is the closest geographical distance.

Installing DLMtool Using RStudio

An alternative method to install the DLMtool package is to click the Packages
tab in the lower right panel in RStudio, and click Install. Check that Repository
(CRAN, CRANextra) is selected in the Install from: drop-down menu, type
DLMtool into the packages dialog box, and click Install.

The DLMtool package relies on a number of other R packages, which the
installation process will automatically install. The number of packages that are
installed, and the time it takes, will depend on what packages you already have
installed on your system (and your download speed).

Updating the DLMtool Package

You will only need to install the DLMtool package once. However, the DLMtool
package is updated from time to time, and you will need to re-install from CRAN
for each new version.

This can be done by using the update.packages command:
update.packages("DLMtool")

C.3. A BRIEF NOTE ON S4 METHODS 229

Loading the DLMtool Package

Once installed, the DLMtool package can be loaded into R by typing in the
command line:
library(DLMtool)

or locating the DLMtool package in the list of packages in RStudio and checking
the box.

C.3 A Brief Note on S4 Methods

The core functions of DLMtool are S4 Classes. Many R users may not have
worked with S4 methods before.

R has three different object oriented (OO) systems, the most common of which
is known as S3. S3 is known as a generic-function OO, and is a casual system
with no formal definition of classes. S4 works similar to S3, but is more formal
and uses classes with a more rigid definition.

It is not essential to understand the difference between S3 and S4, or why one is
preferred over the other, to use the DLMtool. The most important thing that
you need to know how to access the information in S4 classes.

If you have work with R in the past, you are probably familiar with using the $
symbol to access elements in a data frame or list. S4 classes contain a named
list of slots which are analogous to a standard R list. However, the slots in a S4
class differ in two important ways:

1. The type of content in each slot (e.g., character, numeric, matrix) is
determined in the class definition, and cannot be changed. In other words,
you are not able to put content of class character into a slot that is
expecting information of class numeric. This is what is meant by the S4
system being more strict than S3.

2. The slots are accessed with the @ symbol. This is essentially the same as
the $ symbol in S3 classes. You will see examples of this throughout the
User Guide.

The main thing to note here is that when you see the @ symbol being used,
it refers to some particular information (a slot) being accessed from a larger
collection of data (the object).

For further information on the S3 and S4 systems see Advanced R.

http://adv-r.had.co.nz/

230 APPENDIX C. GETTING HELP

C.4 Additional Help on the DLMtool

This User Guide aims to explain the workings of the DLMtool, and address the
most common questions and issues associated with the package.

Additional help material for the DLMtool package and functions can be obtained
in the usual way:
help(DLMtool)

Documentation for each function can be obtained by typing a ? symbol followed
by the function name. For example:
?runMSE

Information on the DLMtool classes can be found by first typing class followed
by the ? symbol and the class name. For example:
class?Data

You can access this user guide at any time from the R console:
userguide()

C.5 Questions on R-related Problems

Although the User Guide attempts to address the most common issues, un-
doubtedly there will be times where you have problems with your R code. R
has a somewhat annoying habit of returning cryptic error messages, that are
sometimes indecipherable, especially to those who are new to the software.

Most coding problems with the R language are the result of a missing parenthesis,
an extra or missing comma or quotation mark, or some other minor typo that
stops your code from running.

There are a number of resources available on the Internet that are devoted to
dealing with questions and problems with R programming. StackOverflow is
great place to start searching for answers to your R-related problems.

There is a high chance that in the past someone has posted the exact question that
you are dealing with, and one or several kind souls have provided helpful solutions.
If not, you can post your own question. But be aware, the StackOverflow
community is made up entirely of people who volunteer their time to help others,
and they sometimes have little patience for questions that don’t demonstrate a
proper search for already posted answers to the problem.

http://stackoverflow.com/questions/tagged/r

Appendix D

Assumptions of DLMtool

Like all models, DLMtool is a simplication of reality. In order to approximate
real fishery dynamics, DLMtool relies on a number of simplifying assumptions.

Some of these assumptions are common to many fishery science models (e.g., age-
structured population dynamics) and are a central to the structure of DLMtool.
Other assumptions are a result of the way DLMtool was designed and developed,
and may represent limitations of DLMtool for applications to particular situations.
It may be possible to deal with some of these assumptions by further development
of DLMtool.

D.1 Biology

Short-Lived Species

Due to the problems with approximating fine-scale temporal dynamics with an
annual model it is not advised to use the DLMtool for very short lived stocks
(i.e., species with a longevity of 5 years or less).

Technically, you could just divide all temporal parameters by a subyear resolution,
but the TAC would be set by sub year and the data would also be available at
this fine-scale which is highly unlikely in a data-limited setting.

A MSE model with monthly or weekly time-steps for the population dynamics
is required for short-lived species, and may be developed in the future.

231

232 APPENDIX D. ASSUMPTIONS OF DLMTOOL

Density-Dependent Compensation

DLMtool assumes that, with the exception of the stock-recruitment relationship,
there is no density-dependent compensation in the population dynamics, and
fish growth, maturity, and mortality does not change directly in response to
changes in stock size.

von Bertalanffy Growth

Growth model in DLMtool is modelled using the von Bertalanffy growth curve.
While this is the most commonly applied model to describe fish growth, it
may not be the preferred growth model for some species. The consequences of
assuming the von Bertalanffy growth model should be considered when using
the DLMtool for species with alternative growth patterns. Since DLMtool V4.4
it is possible to use alternative length-at-age models by using cpars. See the
Custom Parameters chapter for more information.

Natural Mortality Rate at Age

By default DLMtool assumes that natural mortality (M) is constant with age
and size. Since DLMtool V4.4 size or age-specific M can be specified. See the
Size-Specific Natural Mortality chapter for more information.

D.2 MSE Model Assumptions

Retention and Selectivity

The OM has slots for both gear selectivity and retention by size. If the retention
slots are not populated, it is assumed that retention = selectivity, that is, all
fish that are captured by the gear are retained by the fishers.

Most size-regulation MPs (e.g., matlenlim) change the retention pattern and
leave the selectivity pattern unchanged. For example, if a size limited is regulated
well above the current size of selection, fish smaller than the size limit are still
caught by the gear but are discarded and may suffer some fishing mortality
(Stock@Fdisc).

MPs can be designed to modify gear selectivity instead of, or in addition to, the
retention-at-size.

mailto:Stock@Fdisc

D.2. MSE MODEL ASSUMPTIONS 233

Non-Convergence of Management Procedure

In some cases during the MSE Management Procedure may not be able to
successfully calculate a management recommendation from the simulated data.
For example, a catch-curve may used to estimate Z, and F is calculated as
F = Z − M . Because of process and observation error, it is possible that
the estimated F is negative, in which case the MP may fail to calculate a
recommended catch limit.

The Management Procedures have been designed to return NA if they fail to
calculate a management recommendation for any reason. In this case, the
management recommendations from the previous year are used in the simulation,
e.g., TACy = TACy−1.

Idealised Observation Models for Catch Composition Data

Currently, DLMtool simulates catch-composition data from the true simulated
catch composition data via a multinomial distribution and some effective sample
size. This observation model may be unrealistically well-behaved and favour those
approaches that use these data. We are considering adding a growth-type-group
model to improve the realism of simulated length composition data.

Two-Box Model

DLMtool uses a two-box spatial model and assumes homogeneous fishing, and
distribution of the fish stock. That is, growth and other life-history characteristics
do not vary across the two spatial areas. Spatial targeting of the fishing fleet is
currently being developed in the model.

Ontogenetic Habitat Shifts

Since the operating model simulates two areas, it is possible to prescribe a
log-linear model that moves fish from one area to the other as they grow older.
This could be used to simulate the ontogenetic shift of groupers from near shore
waters to offshore reefs. Currently this feature is in development.

Closed System

DLMtool assumes that the population being modelled is in a closed system. There
is no immigration or emigration, and a unit stock is assumed to be represented
in the model and impacted by the management decisions. This assumption may
be violated where the stock extends across management jurisdictions. Violations

234 APPENDIX D. ASSUMPTIONS OF DLMTOOL

of this assumption may impact the interpretation of the MSE results, and these
implications should be considered when applying DLMtool.

Although a unit stock is a central assumption of many modeling and assessment
approaches, it may be possible to further develop DLMtool to account for stocks
that cross management boundaries.

D.3 Management Procedures

Harvest Control Rules Must be Integrated into Data-
Limited MPs

In this version of DLMtool, harvest control rules (e.g. the 40-10 rule) must be
written into a data-limited MP. There is currently no ability to do a factorial
comparison of say 4 harvest controls rules against 3 MPs (the user must describe
all 12 combinations). The reason for this is that it would require further
subclasses.

For example the 40-10 rule may be appropriate for the output of DBSRA but it
would not be appropriate for some of the simple management procedures such
as DynF that already incorporate throttling of TAC recommendations according
to stock depletion.

D.4 Data and Method Application

Data Assumed to be Representative

The MSE model accounts for observation error in the simulated fishery data.
However, the application of management procedures for management advice
assumes that the provided fishery data is representative of the fishery and is
the best available information on the stock. Processing of fishery data should
take place before entering the data into the fishery data tables, and assumptions
of the management procedures should be carefully evaluated when applying
methods using DLMtool.

D.5 Calculating Reference Points

Biological reference points are used to initialize the simulations (e.g. Depletion)
and evaluate the performance of management procedures (e.g., B/BMSY , B/B0,
etc). Although these terms are used frequently, the definition of biological
reference points can be ambiguous, and there may be multiple ways of defining or

D.5. CALCULATING REFERENCE POINTS 235

interpreting them. This is especially true when life-history and fishing parameters
vary over time.

Here we describe how the biological reference points are defined and calculated
in DLMtool.

Depletion and Unfished Reference Points

The Depletion parameter in the Stock Object (Stock@D) is used to initialize
the historical simulations. Although the term Depletion is used frequently in
fisheries science, it is rarely clearly defined. In most contexts, Depletion is used
to mean the biomass today relative to the average unfished biomass. This raises
two questions:

1. What do we mean by biomass? Is it total biomass (B), vulnerable biomass
(VB), or spawning biomass (SB)?

2. What do we mean by average unfished biomass? Average over what time-
period? Does this refer to the average biomass at some time in history
before fishing commenced? Or is the expected biomass today if the stock
had not been fished?

Examples can be found for all three definitions of biomass in the first question.
We define Depletion with respect to spawning biomass (SB). That is, the values
specified in Stock@D refer to the spawning biomass in the last historical year
(i.e. ‘today’; SBunfished

y=OM@nyears) relative to the average unfished spawning biomass
(SB0).

The answer to the second question is a little more complicated. There are several
ways to define SB0 within the simulation model:

1. The unfished spawning biomass at the beginning of the simulations (i.e
Year = 1).

2. The unfished spawning biomass at the end of the historical simulations (i.e
Year = OM@nyears).

3. The average unfished spawning biomass over the first several years of the
simulations. This could be different to 1 due to inter-annual variability in
life-history parameters (e.g, Stock@Linfsd).

4. The average unfished spawning biomass over all historical years (or the
last several years). This could be different to 3 due to time-varying trends
in parameters (e.g., by using OM@cpars$Linfarray).

In DLMtool the operating model is specified based on the assumed or estimated
spawning biomass today relative to the average equilibrium (i.e no process
error in recruitment) biomass at the beginning of the fishery; i.e., the change
in biomass over the history of the fishery (point 3 above). We use the age
of 50% maturity (A50 in the first historical year; calculated internally from
Stock@Linf, Stock@Linfsd, Stock@K, Stock@Ksd, Stock@t0, and Stock@L50)
as an approximation of generation time, and calculate the average unfished

236 APPENDIX D. ASSUMPTIONS OF DLMTOOL

spawning biomass (SB0) over the first A50 years in the historical simulations.
That is:

SB0 =
∑A50

y=1 SB
unfished
y

A50

where A50 is rounded up to the nearest integer and SBunfished
y is the equilibrium

unfished spawning biomass in year y. The same calculation is used to calculate
other unfished reference points (e.g, B0, V B0), as well as the unfished spawning-
per-recruit parameters used in the Ricker stock-recruitment relationship.

The unfished reference points and unfished biomass and numbers by year are
returned as a list in the MSE and Hist objects; i.e MSE@Misc$Unfished$Refs
and ‘MSE@Misc$Unfished$ByYear respectively.

Note

Note that although Depletion is calculated relative to the average un-
fished equilibrium spawning biomass, the population in the simulation
model is initialized under dynamic conditions, that is, with process
error in recruitment to all age classes. This means that, depending
on the magnitude of recruitment variability, the initial biomass in
Year 1 may be quite different to the equilibrium unfished biomass as
calculated above.

D.5.1 Initial Depletion

As noted above, the operating model initializes the population in an unfished
dynamic state. Since DLMtool version 5.3 it is possible specify depletion in
the first historical year by using OM@cpars$initD. When this feature is used,
the population is initialized in a dynamic state with spawning biomass equal to
initD∗SB0; that is, initial spawning biomass in Year 1 is relative to the unfished
spawning biomass in Year 1.

Analysts need to be aware that if there are large time-varying trends in life-
history parameters, the SB0 in Year 1, which is no longer the first year that the
fishery commenced, may be different to the SB0 from the (not modeled) period
before fishing.

D.5.2 MSY Reference Points

The calculation of maximum sustainable yield (MSY) and related reference
points are also impacted by inter-annual variability in life-history and fishing
parameters (i.e., selectivity pattern). For example, if there is large inter-annual
variability in natural mortality or growth, MSY and BMSY may vary significantly
between years.

D.5. CALCULATING REFERENCE POINTS 237

We calculate MSY and related metrics (e.g., BMSY) for each time-step in the
model based on the life-history and fishing parameters in that year. The MSY
reference points are used in both the simulated Data object, and to evaluate the
performance of the management procedures.

For the simulated Data object, we calculate MSY reference points following a
similar procedure to that described above for B0. We use A50 as an approximation
of generation time, and average the annual MSY values over A50 years around
the last historical year. For example, if OM@nyears = 50 and A50 = 5, SBMSY
is calculated as:

SBMSY =
52∑

y=48
SBMSY

y

where SBMSY
y is the spawning biomass corresponding with maximum sustainable

yield in year y. The logic behind this is, if estimates of MSY, BMSY, etc are
available, they are likely calculated based on current life-history information,
which would be estimated from data spanning several age classes.

The MSY reference points in the Data object are not updated in the future
projection years. The MSY reference points and MSY values by year are returned
in MSE@Misc$MSYRefs.

Note

In DLMtool the MSY metrics are always calculated by year. The
slot MSE@B_BMSY returns the spawning biomass in the projections
divided by SBMSY in each year of the projections. For alternative
methods to calculate B/BMSY, such as relative to the constant
BMSY described above, use MSE@SSB or MSE@B and the data stored
in MSE@Misc$MSYRefs.

D.5.3 Setting Depletion at a fraction of BMSY

Relative reference points such as BMSY
B0

, and SBMSY
SB0

are calculated relative to
the unfished biomass described in the previous section. This means that it is
relatively straightforward to initialize the simulation model at a fraction of BMSY
rather than B0.

For example, suppose you wish to set the depletion in the final historical year at
0.5SBMSY:
library(DLMtool)
OM <- testOM; OM@nsim <- 2
OM@cpars$D <- runif(OM@nsim, OM@D[1], OM@D[2]) # need to populate OM@cpars$D so that random samples are the same
Hist <- runMSE(OM, Hist=TRUE, silent=TRUE)
OM@cpars$D <- 0.5 * Hist@Ref$SSBMSY_SSB0 # update Depletion to 0.5 BMSY using cpars

238 APPENDIX D. ASSUMPTIONS OF DLMTOOL

Hist <- runMSE(OM, Hist=TRUE, silent=TRUE)

matplot(t(Hist@TSdata$SSB/Hist@Ref$SSBMSY), type="l", ylim=c(0,3),
ylab="B/BMSY", xlab="Historical Years", bty="l")

abline(h=0.5, lty=2, col="gray")

0 10 20 30 40 50

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Historical Years

B
/B

M
S

Y

Appendix E

Changes

Important changes - DLMtool V4.1 and greater

DLMtool V4.1 introduced some important changes to the Operating Model
object. The number of simulations (nsim) and the number of projection years
(proyears) are now slots in the OM object, rather than arguments to runMSE
(see Management Strategy Evaluation). This change was required to allow users
to specify their own custom futures for parameters like M, growth, etc. The
OM object also now has a new random seed slot in the operating model, which
ensures that the MSE results are now exactly reproducible.

You can modify the number of simulations, the number of projection years, or
the value of the random seed by modifiying the relevant slots in the OM object:

• OM@nsim
• OM@proyears
• OM@seed

Important changes - DLMtool V4.5 and greater

Since DLMtool V5.0 the following slots have been added to the OM object:

• OM@interval
• OM@pstar
• OM@maxF
• OM@reps

This was done so that an OM object is completely self-contained and includes
all information used in the MSE.

239

240 APPENDIX E. CHANGES

E.1 Bio-Economic Model

Since DLMtool V5.4+ there is now the option to include a simple bio-economic
model to control the effort dynamics of the fishery in the projection years.

Without the bio-economic model, the total allowable catch (TAC) recommen-
dation provided by an MP is caught each year (assuming no implementation
error, the vulnerable biomass > TAC,and the Fmax constraint is not exceeded).
In cases where the vulnerable biomass is low, fishing effort can increase to very
high levels. Similarly, a total allowable effort (TAE) recommendation prescribes
the fishing effort each year, regardless of the level of catch that is obtained with
that effort.

With the bio-economic model the TAC and TAE act as total catch and effort
limits respectively, but change in fishing effort each year is based on recent
profits.

Effort E in year t+ 1 is calculated as:

Et+1 = max(Et + ηPt, 0)

where η is a responsiveness parameter that determines the rate that fishers enter
or leave the fishery based on the profit (Pt) from the current year t.

Profit is calculated as:

Pt = Rt − Ct

where Rt and Ct are total revenue and total cost in year t. Note that in this
context, ‘normal’ profits of the fishing operations are included in the total costs
(e.g., operating expenses + crew salary + minimum profit required to make the
business venture feasible), and P refers to profits in excess of this normal profit;
sometimes referred to as resource rent.

As in any industry, profits above the ‘normal’ profits (i.e, positive resource
rents) will attract new entrants to the fishery (assuming an open access fishery).
Conversely, when the profits are negative, fishers are able to earn a higher income
in an alternative livelihood and will leave the fishery.

E.2 Key Bio-Economic Parameters

Currently, the bio-economic model is specified using the custom parameters
(cpars) feature of DLMtool. There are three required parameters for the bio-
economic model: CostCurr, RevCurr, and Response.

E.2. KEY BIO-ECONOMIC PARAMETERS 241

E.2.1 Current Cost and Revenue

The first two parameters, CostCurr and RevCurr, are used to specify the cost
of the current effort and the revenue of the current retained catch respectively.

As a simple example, suppose the fishery is currently close to a bio-economic
equilibrium (revenue = cost), with the cost of the current effort around $10,000
and the revenue from the current catch a similiar value.

These can be specified as a vector of length OM@nsim using the cpars feature.
First we create an Operating Model (OM). For simplicity, we’ll assume there is
no observation or implementation error and only include a few simulations:
OM <- new("OM", Stock=Albacore, Fleet=FlatE_NDom, Obs=Perfect_Info, Imp=Perfect_Imp) # new OM object
OM@nsim <- 3 # three simulations

OM@qinc <- c(0,0)
OM@qcv <- c(0,0)

Note that we also assume that there is no inter-annual variability or long-term
trends in catchability. Directional changes in catchability will have a signficant
impact on the profitability of fishing.

We then specify the cost of current effort (CostCurr) and revenue of the current
catch (RevCurr) using cpars, with the parameter values drawn from uniform
distributions:
OM@cpars$CostCurr <- runif(OM@nsim, 9500, 10500)
OM@cpars$CostCurr # cost of current effort in $

[1] 9872.198 9543.825 10209.684
OM@cpars$RevCurr <- runif(OM@nsim, 9500, 10500)
OM@cpars$RevCurr # revenue of current catch in $

[1] 10157.690 9749.856 9800.055

Profit in the current year (i.e., the last historical year in the simulation) is:
Profit <- OM@cpars$RevCurr - OM@cpars$CostCurr
Profit # cost of current effort in $

[1] 285.4920 206.0309 -409.6292

E.2.2 Fishing Effort Responsiveness

The responsiveness parameter (η) is specified with the cpars$Response. Note
that in DLMtool fishing effort is always calculated relative to the fishing effort
in the last historical year (i.e., ‘current effort’). Therefore, η describes the units
of current effort expected to enter/leave the fishery per unit-profit.

242 APPENDIX E. CHANGES

Suppose the current cost of fishing effort is $10,000 and involves 200 days of
fishing. This means that each day of fishing must earn revenue of at least $50 to
make it worthwhile to go fishing, and each $50 in profit (loss) will result in one
more (less) day fishing. Put another way, each dollar in profit (loss) will result
in 1

50 = 0.02 additional (fewer) days of fishing.

Given that current effort is 200 days, η is calculated as 0.02
200 = 0.0001:

OM@cpars$Response <- rep(0.0001, OM@nsim) # fishing effort response rate - assuming no variability

Effort at the beginning of the first projection year is then:

E1 = max(E0 + 0.0001P0), 0)
As effort is always relative to the last historical year, E0 = 1.

Continuing our example:
Effort <- 1+OM@cpars$Response*Profit
Effort # effort in the first projection year

[1] 1.0285492 1.0206031 0.9590371

E.3 Changes in Cost and Revenue

By default cost per unit effort and revenue per unit catch are assumed to be
stationary. Average annual increases or decreases in cost and revenue can be
included using the CostInc and RevInc parameters.

Suppose costs are expected to increase by 2 - 3% per year:
OM@cpars$CostInc <- runif(OM@nsim, 2, 3)

and the price per-unit-catch is assumed to either increase or decrease by up to
1% per year:
OM@cpars$RevInc <- runif(OM@nsim, -1, 1)

ind <- as.matrix(expand.grid(y=1:OM@proyears, sim=1:OM@nsim))
CpE <- RpC <- matrix(NA, nrow=OM@proyears, ncol=OM@nsim)
CpE[ind] <- (1+OM@cpars$CostInc[ind[,2]]/100)^ind[,1]
RpC[ind] <- (1+OM@cpars$RevInc[ind[,2]]/100)^ind[,1]

ylim <- range(c(CpE, RpC))
par(mfrow=c(1,2))
matplot(CpE, type="l", xlab="Projection Year", ylab='Change in cost per-unit-effort',

bty="l", lwd=2, ylim=ylim)
matplot(RpC, type="l", xlab="Projection Year", ylab='Change in price per-unit-catch',

bty="l", lwd=2, ylim=ylim)

E.4. BIO-ECONOMIC MODEL & MPS 243

0 10 20 30 40 50

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Projection Year

C
ha

ng
e

in
 c

os
t p

er
−

un
it−

ef
fo

rt

0 10 20 30 40 50

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Projection Year

C
ha

ng
e

in
 p

ric
e

pe
r−

un
it−

ca
tc

h

It’s clear that this fishery is going to be a lot less profitable in the future!

For simplicity we will assume no change in the marginal cost and revenue in the
future for the remaining examples:
OM@cpars$CostInc <- OM@cpars$RevInc <- NULL

E.4 Bio-Economic Model & MPs

E.4.1 With a TAC

When an output control is used, the effort required to catch the TAC is first
calculated. Then, if the required effort is greater than the actual effort in the
fishery, the entire TAC is not caught. That is, the retained catch in that year is
less than the TAC.

If the effort required to catch the TAC is less than the effort entering the fishery
at the beginning of the year, fishing is assumed to cease for the year, and the
actual effort is less than that calculated by the bio-economic model. In these
cases the TAC is limiting effort while the fishery is still profitable. However, the
potential fishing effort for that year is still used to calculate potential effort for
the following year.

244 APPENDIX E. CHANGES

For example, suppose, based on the profit from the previous year, potential
fishing effort at the beginning of the year is 300 days, but because of a restrictive
TAC only 100 days fishing is required to catch the entire TAC. Potential effort
for the following year is calculated from the profit from the previous year and
the effort available at the beginning of the previous year (i.e., 300 days).

E.4.2 With a TAE

In an fishery managed with an effort control the maximum allowed effort is
determined by the management procedure. Actual effort is determined by the
bio-economic model, but cannot exceed the total allowable effort (TAE) set by
the MP, i.e, the actual effort can be less than the TAE. Latent effort is recorded
in MSE@Misc$LatEffort.

E.4.3 Without TAC or TAE

For fisheries without a TAE or TAC control (e.g., a size limit or spatial closure)
the fishing effort each year is determined by the bio-economic model.

E.5 Some Examples

First we’ll define a Management Procedure that returns no management recom-
mendations:
NMref <- function(x, Data, ...) {

new("Rec")
}
class(NMref) <- "MP"

Here fishing effort is determined by the bio-economic model. Note that if the
bio-economic model is not used, this MP will be equivalent to curE, where fishing
effort in the future is fixed at the current level.

We select four management procedures: ‘NMref’ - our new custom MP with no
management, curE - a TAE fixed at the current historical level, Itarget1 - an
output control where the TAC is adjusted based on a trend in the index, and
ItargetE1 - an effort control where the TAE is adjusted based on a trend in
the index.
MPs <- c('NMref', 'curE', 'Itarget1', "ItargetE1")
MSE1 <- runMSE(OM, MPs=MPs, silent=TRUE)

We demonstrate the bio-economic model by plotting the biomass, catch, effort,
cost, profit, and revenue for a single simulation and several MPs. See the last
section for the plotting code.

E.5. SOME EXAMPLES 245

The plots show projections of a single simulation of: a) Depletion (solid) and
BMSY (dashed), b) Catch (solid) relative to current catch (dotted) and where
applicable the TAC (dashed), c) Effort (solid) relative to current effort (dotted)
and where applicable the TAE (dashed), and Cost, Revenue and Profit (dotted
line indicates 0 profit).

The plot of simulation 2 of the first MP NMref shows that the projected fishing
effort decreases in the first several years as profits are negative, and increases to
well above the current level later in the projection period as profits increase.
Plot(MSE1, 1, sim=2)

NMref

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Depletion

BMSY_B0

a

0.0

0.5

1.0

1.5

0 10 20 30 40 50
Year

va
lu

e key

Catch

b

0.0

0.5

1.0

1.5

0 10 20 30 40 50
Year

va
lu

e key

Effort

c

−5000

0

5000

10000

15000

0 10 20 30 40 50
Year

va
lu

e

key

Cost

Profit

Revenue

d

The curE MP shows the same pattern in fishing effort for the first ~30 years,
but the TAE constraint limits the maximum effort to the current effort (i.e, 1).
Plot(MSE1, 2, sim=2)

246 APPENDIX E. CHANGES

curE

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e
key

Depletion

BMSY_B0

a

0.0

0.5

1.0

0 10 20 30 40 50
Year

va
lu

e key

Catch

b

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Effort

TAE

c

0

5000

10000

0 10 20 30 40 50
Year

va
lu

e

key

Cost

Profit

Revenue

d

In several years the TAC set by the Itarget1 MP is not able to be caught due
to insufficient effort in the fishery (Catch < TAC).
Plot(MSE1, 3, sim=2)

Itarget1

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Depletion

BMSY_B0

a

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Catch

TAC

b

0.0

0.3

0.6

0.9

0 10 20 30 40 50
Year

va
lu

e key

Effort

c

−4000

0

4000

8000

0 10 20 30 40 50
Year

va
lu

e

key

Cost

Profit

Revenue

d

E.6. FUTURE DEVELOPMENTS 247

Similiarly, while the ItargetE1 MP decreases the TAE in the first several years
of the projection period, the large negative profits result in a larger decrease in
fishing effort (Effort < TAE).
Plot(MSE1, 4, sim=2)

ItargetE1

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Depletion

BMSY_B0

a

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e key

Catch

b

0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50
Year

va
lu

e

key

Effort

TAE

c

0

3000

6000

0 10 20 30 40 50
Year

va
lu

e

key

Cost

Profit

Revenue

d

E.6 Future Developments

Future versions of DLMtool will extend the bio-economic model to include
additional features, including:

• ability to include price by size class
• ability to specify an existing limited entry fishery
• inter-annual variability in cost and price
• include cost of fishing by area
• include discount rate to calculate net present value of catch
• specify the number of years profit is calculated to determine fishers enter-

ing/leaving fishery (currently previous year)
• separate response parameters for increasing and decreasing fleet

E.7 Plotting Code

The code to produce the plots:

248 APPENDIX E. CHANGES

library(dplyr); library(ggplot2); library(cowplot); library(tidyr)
Plot <- function(MSEobj, mp=1, sim=1) {

Depletion <- as.vector(MSEobj@SSB[sim, ,])/MSEobj@OM$SSB0[sim]
BMSY_B0 <- MSEobj@OM$SSBMSY_SSB0[sim]
MPs <- rep(MSEobj@MPs, MSEobj@proyears)
Years <- rep(1:MSEobj@proyears, each=MSEobj@nMPs)

currCatch <- apply(MSEobj@CB_hist[,,MSEobj@nyears,], 1, sum)
Catch <- as.vector(MSEobj@C[sim, ,])/currCatch[sim]
TAC <- as.vector(MSEobj@TAC[sim,,])/currCatch[sim]

Effort <- as.vector(MSEobj@Effort[sim, ,])
TAE <- as.vector(MSEobj@Misc$TAE[sim,,])

Cost <- as.vector(MSEobj@Misc$Cost[sim, ,])
Revenue <- as.vector(MSEobj@Misc$Revenue[sim, ,])
Profit <- Revenue - Cost

DF <- data.frame(MP=MPs, Year=Years, Depletion=Depletion, BMSY_B0=BMSY_B0,
Catch=Catch, TAC=TAC,
Effort=Effort, TAE=TAE,
Cost=Cost, Revenue=Revenue, Profit=Profit)

MP1 <- MSEobj@MPs[mp]
pDF <- DF %>% filter(MP==MP1)
LineSize <- 1
pDF2 <- pDF %>% gather("key", "value", 3:4)
pDF2$key <- factor(pDF2$key, levels=c("Depletion", "BMSY_B0"), ordered = TRUE)
p1 <- ggplot(pDF2, aes(x=Year, y=value, linetype=key)) + geom_line(size=LineSize) +

theme_classic() + expand_limits(y=c(0,1))

pDF2 <- pDF %>% gather("key", "value", 5:6)
chk <- pDF2 %>% filter(key == "TAC") %>% select(value)
if (all(is.na(chk$value))) pDF2 <- pDF2 %>% filter(key != "TAC")
p2 <- ggplot(pDF2, aes(x=Year, y=value, linetype=key)) + geom_line(size=LineSize) +

theme_classic() + expand_limits(y=c(0,1)) +
geom_abline(slope=0, intercept = 1, lty=3, color="darkgray")

pDF2 <- pDF %>% gather("key", "value", 7:8)
chk <- pDF2 %>% filter(key == "TAE") %>% select(value)
if (all(is.na(chk$value))) pDF2 <- pDF2 %>% filter(key != "TAE")
p3 <- ggplot(pDF2, aes(x=Year, y=value, linetype=key)) + geom_line(size=LineSize) +

theme_classic() + expand_limits(y=c(0,1)) +
geom_abline(slope=0, intercept = 1, lty=3, color="darkgray")

E.7. PLOTTING CODE 249

pDF2 <- pDF %>% gather("key", "value", 9:10)
p4 <- ggplot(pDF2, aes(x=Year, y=value, color=key)) + geom_line(size=LineSize) +

geom_line(aes(x=Year, y=Profit, color="Profit"), size=LineSize) +
theme_classic() + expand_limits(y=0) +
geom_abline(slope=0, intercept = 0, lty=3, color="darkgray")

suppressWarnings(
p <- plot_grid(p1, p2, p3, p4, ncol=2, labels="auto")

)

title <- ggdraw() + draw_label(MP1, fontface='bold')
plot_grid(title, p, ncol=1, rel_heights=c(0.1, 1))

}

	Introduction
	Introduction
	Data-Limited Methods Toolkit
	Management Strategy Evaluation
	How does Management Strategy Evaluation Differ from Stock Assessment?
	Assumed Knowledge
	The User Manual
	DLMtool Bug Reports
	Version Notes

	Getting Started with DLMtool
	Getting Started
	Required Software
	Installing DLMtool
	Loading DLMtool

	A Very Quick Demo
	The Operating Model
	OM Components
	Plotting OM Components
	Building an OM from Component Objects
	Visualizing an OM

	Management Procedures
	What is a Management Procedure?
	Available Management Procedures
	Types of Management Procedure

	Running the MSE
	Specify an Operating Model
	Choose the Management Procedures
	Run the MSE

	Checking Convergence
	Examining the MSE Results
	Introducing Performance Metrics
	Summary Table
	Plotting MSE Results

	Parallel Processing
	Setting up Parallel Processing
	Running MSE with Parallel Processing
	Determining Optimal Number of Processors

	Creating an Operating Model
	Creating a New Operating Model
	An Example WorkFlow
	Create a New Project
	Initialize a New OM
	Populate and Document OM
	Compile the OM Report
	Import the OM into R
	Documenting an Existing OM

	Generating Correlated Life-History Parameters
	Predicting all life-history parameters
	Predicting some life-history parameters
	Predicting correlated parameters
	Introducing Custom Parameters

	Modifying the OM
	The tinyErr function
	The Replace function

	Operating Model Library

	Interpreting MSE Results
	Examining the MSE object
	The First Six Slots
	The OM Slot
	The Obs Slot
	The B_BMSY and F_FMSY Slots
	The B, FM, C and TAC Slots
	The SSB_hist, CB_hist, and FM_hist Slots
	The Effort Slot

	Performance Metrics
	The Need for Performance Metrics
	Inevitable Trade-Offs
	Commonly used Performance Metrics
	Performance Metrics Methods
	Summarizing Management Procedure Performance

	Value of Information

	Using Fishery Data
	The Fishery Data Object
	In the MSE
	Application of Management Procedures Using Real Fisheries Data

	Example Data Objects
	Creating Your Own Data Object
	Creating a Data File in Excel
	Importing the Data object
	Example Fishery Data Files
	Populating a Data Object in R

	Plotting Data Objects
	Determining Feasible and Available Management Procedures
	Feasible MPs
	Available MPs
	Unavailable MPs

	Applying Management Procedures

	Advanced DLMtool
	Averaging MPs
	Evaluating OM
	Customizing the Operating Model
	Accounting for Historical Changes in Fishing
	Size-Specific Natural Mortality
	Selection, Retention and Discard Mortality

	Developing Custom Management Procedures
	The Anatomy of an MP
	A Constant Catch MP
	A More Complex MP
	Beyond the Catch Limit

	Custom Parameters
	Valid cpars names
	Correlated samples
	Custom internal parameters

	Subsetting the MSE Object
	Subsetting by Performance
	Subsetting by Operating Model Parameters

	Custom Performance Metrics
	Necessity of Complexity
	PM Methods in Detail
	Creating Example PMs and Plot

	Acknowledgements
	References
	Getting Help
	First Time Working With R?
	Installing the DLMtool Package
	A Brief Note on S4 Methods
	Additional Help on the DLMtool
	Questions on R-related Problems

	Assumptions of DLMtool
	Biology
	MSE Model Assumptions
	Management Procedures
	Data and Method Application
	Calculating Reference Points

	Changes
	Bio-Economic Model
	Key Bio-Economic Parameters
	Changes in Cost and Revenue
	Bio-Economic Model & MPs
	Some Examples
	Future Developments
	Plotting Code

